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Problem11. The following problem outlines a proof of Theorem 1.6.7 that is different
from a straightforward generalization of the proof of Theorem 1.6.2. Let + be a vector
space with basis {41, . . . , 4=}.

(a) For a fixed tuple � = (81, ..., 8A ) with 1 ≤ 81 < 82 < · · · < 8A ≤ =, use multilinear
extension to conclude that there exists a multilinear map i� : + A →  satisfying

i� (4 91, . . . , 4 9A ) =


sgn(f) if there exists a permutation f of [r] s.t. 9f (:) = 8:
for all : ∈ [A ];

0 otherwise.

for all ( 91, . . . , 9A ) ∈ [=]A .
(b) Show thati� is alternating, and conclude that it therefore factors through

∧A : + A →∧A + to yield a linear map i� :
∧A + →  satisfying i� ◦

∧A = i� . (Careful: it is
not sufficient to check the alternating property on tuples of basis vectors!)

(c) Show that the set { 4 91 ∧ · · · ∧ 4 9A : 1 ≤ 91 < 92 < · · · < 9A ≤ = } is linearly
independent. (Consider a linear relation of these elements and apply suitable maps
i� to conclude all the coefficients are zero.)

Solution (a) Apply the multilinear extension theorem (Theorem 1.1.4); you only have
to observe that the permutation f is indeed unique, and so sgn(f) is well-defined.

(b) The crux is to show that i� is alternating. The proof is essentially the same as
when one shows that the Leibniz formula is alternating (typically checked when one
shows existence of the determinant in Linear Algebra).

Let (E1, . . . , EA ) ∈ + A and suppose : ≠ ; are such that E: = E; . Express each E8 =∑=
9=1 U8, 948 with U8, 9 ∈  in terms of the given basis. Then

i�

(
=∑
91=1

U1, 914 91, . . . ,
=∑
9A=1

UA, 9:4 9:

)
=

=∑
91=1

· · ·
=∑
9A=1

U1, 91 . . . UA, 9:i� (4 91, . . . , 4 9: )

=
∑

( 91,..., 9A )∈[=]A
U1, 91 . . . UA, 9:i� (4 91, . . . , 4 9: ) = (∗)

by multilinearity of i� . For ( 91, . . . , 9A ) observe: if the entries in the tuple are not a
permutation of the A distinct numbers 81, . . . , 8A , then i� (4 91, . . . , 4 9: ) = 0 (i.e., if either
there are duplicate entries in the tuple or if there are some entries that do not appear in
{81, . . . , 8A }). So the only summands we are left to consider, are those where ( 91, . . . , 9A )
is a permutation of (81, . . . , 8A ), i.e., where there exists f ∈ SA such that 9a = 8f (a) for all
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a ∈ [A ]. Then

(∗) =
∑
f∈SA

U1,8f (1) . . . UA,8f (A )i� (48f (1) , . . . , 48f (A ) ) =
∑
f∈SA

U1,8f (1) . . . UA,8f (A ) sgn(f−1).

=
∑
f∈SA

U1,8f (1) . . . UA,8f (A ) sgn(f).

Now recall our assumption E: = E; , i.e., U:,9 = U;, 9 for all 9 ∈ [=]. Let g = (: ;)
(transposition of : and ;). Then U1,8f (1) · · ·UA,8f (A ) = U1,8fg (1) · · ·UA,8fg (A ) (because fg (:) =
f (;), fg (;) = f (:) and fg (a) = fa for a ∉ {:, ;}).

The group SA is the disjoint union of the two cosets �A and �Ag (here �A ⊆ SA

is the alternating group on A elements, i.e., the subgroup of all permutations f with
sgn(f) = 1).

We split

(∗) =
∑
f∈�A

U1,8f (1) . . . UA,8f (A )i� (48f (1) , . . . , 48f (A ) ) +
∑
f∈�A

U1,8fg (1) . . . UA,8fg (A )i� (48fg (1) , . . . , 48fg (A ) )

=
∑
f∈�A

U1,8f (1) . . . UA,8f (A ) (i� (48f (1) , . . . , 48f (A ) ) + i� (48fg (1) , . . . , 48fg (A ) ))

=
∑
f∈�A

U1,8f (1) . . . UA,8f (A ) (sgnf + sgnfg).

=
∑
f∈�A

U1,8f (1) . . . UA,8f (A ) (sgnf − sgnf) = 0.

Now that we know that i� is alternating, the universal property of
∧A implies the

existence of i� (Theorem 1.6.5).
(c) Let M denote the set of all A -element subsets of [=]. For � ∈ M, with � = {1 ≤

91 < 92 < · · · < 9A ≤ =}, let 4 � := 4 91 ∧ · · · ∧ 4 9A . Let _� ∈  such that∑
�∈M

_�4 � = 0.

For � ∈ M, consider the map i� from (b) and apply it to the linear combination. Then

0 = i�
©­«
∑
�∈M

_�4 �
ª®¬ =

∑
�∈M

_�i � (4 � ) = _�

(because _� (4 � ) = 0 if � ≠ � ). Since � was arbitrary, _� = 0 for all � ∈ M, and therefore
the family (4 � )�∈M is linearly independent.

Problem13. For a ring �, the center is defined as

/ (�) := { G ∈ � : ∀~ ∈ � : G~ = ~G }.

Show:
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(a) / (�) is a ring.
(b) If ' is a commutative ring, then the ring � is a (unitary) associative '-algebra if

and only if there exists a ring homomorphism i : ' → / (�).

Solution. (a) Since� is a ring, it suffices to check that / (�) is a subring, i.e., it suffices
to show: 1 = 1� ∈ / (�) and for all G , ~ ∈ / (�) also G + ~ ∈ / (�) and G~ ∈ / (�).

Let 0 ∈ � and G , ~ ∈ / (�). Then 10 = 0 = 01, so 1 ∈ / (�). Next, (G + ~)0 =

G0 + ~0 = 0G + 0~ = 0(G + ~), so G + ~ ∈ / (�) (we used that G , ~ are central in the
middle equality). Finally (G~)0 = G (~0)=G (0~) = (G0)~=(0G)~ = 0(G~), so G~ ∈ / (�)
(the equalities where it is used that G or ~ are central, are highlighted in red).

(b) For didactic purposes, I write • for the multiplication on �, to make it easier to
distinguish it from the '-module structure on �..

Suppose first that � is an unitary associative '-algebra, i.e., the ring � also has an
'-module structure satisfying A (0 • 1) = (A0) • 1 = 0 • (A1) for all A ∈ ', 0, 1 ∈ �.
Define i : ' → � by A ↦→ A1�. We check that i (') ⊂ / (�): Let 0 ∈ � and A ∈ '. Then
i (A ) • 0 = (A1�) • 0 = A (1� • 0) = A (0 • 1�) = 0 • (A1�) = 0 • i (A ). Therefore we can
restrict the codomain of i to obtain i : ' → � with i (A ) = A1�.

Now we have to check that i is a ring homomorphism. Indeed, i (1') = 1'1� = 1�
(this is an axiom of the module structure). Let A , B ∈ '. Then i (A + B) = (A + B)1� =

A1� + B1� (distributivity of the module structure), and i (AB) = (AB)1� = A (B1�) =

A (B (1� • 1�)) = A (1� • B1�) = (A1�) • (B1�) (the second equality is the associativity of
the module structure; 1� • 1� = 1� because 1� is the multiplicative identity in �). Thus,
the first direction is shown.

Conversely, suppose � is a ring and i : ' → / (�) is a ring homomorphism. Define
' ×� → � by (A, 0) ↦→ A0 := i (A ) • 0.

We first check that this turns � into an '-module. We already know that (�,+)
is an abelian group. Let A , B ∈ ' and 0, 1 ∈ �. Then 1'0 = i (1') • 0 = 1� • 0 = 0.
Next (AB)0 = i (AB) • 0 = (i (A ) • i (B)) • 0 = i (A ) • (i (B) • 0) = i (A ) • (B0) = A (B0).
Finally (A + B)0 = i (A + B) • 0 = (i (A ) + i (B)) • 0 = i (A ) • 0 + i (B) • 0 = A0 + B0 and
A (0 + 1) = i (A ) • (0 + 1) = i (A ) • 0 + i (A ) • 1 = A0 + A1.

To see that � is an '-algebra, we still have to check: for all 0, 1 ∈ � and A ∈ ',
it holds that A (0 • 1) = (A0) • 1 = 0 • (A1). We check the first equality: A (0 • 1) =

i (A ) • (0 • 1) = (i (A ) • 0) • 1 = (A0) • 1. For the second one, we actually need that i
maps into the center: (A0) • 1 = (i (A ) • 0) • 1 = 0 • (i (A ) • 1) = 0 • (A1).


