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Problem 11. The following problem outlines a proof of Theorem 1.6.7 that is different
from a straightforward generalization of the proof of Theorem 1.6.2. Let V be a vector
space with basis {ej,...,e,}.

(a) For a fixed tuple I = (iy,...,i,) with 1 < i; < iy < -+ < i, < n, use multilinear
extension to conclude that there exists a multilinear map ¢;: V" — K satisfying

sgn(o) if there exists a permutation o of [r] s.t. jy(x) = ik
er(ej,....ej,) = forall k € [r];

0 otherwise.

for all (ji,...,Jr) € [n]".

(b) Show that ¢y is alternating, and conclude that it therefore factors through A\": V" —
A"V to yield a linear map ¢;: A"V — K satisfying ¢; o A" = ¢;. (Careful: it is
not sufficient to check the alternating property on tuples of basis vectors!)

(c) Show that the set {e;, A---Aej, : 1 < ji1 < jo <--- < j <n}islinearly
independent. (Consider a linear relation of these elements and apply suitable maps
@7 to conclude all the coefficients are zero.)

Solution (a) Apply the multilinear extension theorem (Theorem 1.1.4); you only have
to observe that the permutation o is indeed unique, and so sgn(o) is well-defined.

(b) The crux is to show that ¢ is alternating. The proof is essentially the same as
when one shows that the Leibniz formula is alternating (typically checked when one
shows existence of the determinant in Linear Algebra).

Let (v1,...,0,) € V" and suppose k # [ are such that vy = v;. Express each v; =
Z;’:l a; je; with ¢; j € K in terms of the given basis. Then

n

n n n
@1 Z aj € - - .,Z ar e | = Z e Z arj, ---arjer(ej, ..., ej)
J1=1 Jr=1 Jr=1

=1

= Z al,jl_.,ar,jk(pj(eh,...,ejk) = (*)

by multilinearity of ¢;. For (ji, ..., j-) observe: if the entries in the tuple are not a
permutation of the r distinct numbers iy, ..., i, then ¢;(ej,, ..., e;) =0 (i.e, if either
there are duplicate entries in the tuple or if there are some entries that do not appear in
{i1, ..., ir}). So the only summands we are left to consider, are those where (ji, ..., j,)
is a permutation of (i1, ..., i), i.e, where there exists ¢ € &, such that j, = i, for all



DAS Week 5, 4.11.2022 WS 2022

v € [r]. Then
-1
(*) = Z alsio'(l) cee ar,ia(,) @I(eig(l), cees eia(,)) = Z al;io'(l) e ar’ia(r) Sgn(O' )
0eS, 0eS,

= Z ALiyry - - Arig(r) sgn(o).
eSS,
Now recall our assumption vx = v, i.e, a; = oy for all j € [n]. Let 7 = (k I)
(transposition of k and [). Then ALig) " Oy = Cliget) " Friigeir) (because o7(k) =
o(l), or(l) = o(k) and or(v) = ov for v ¢ {k, [}).

The group &, is the disjoint union of the two cosets A, and A,7 (here A, C &,
is the alternating group on r elements, i.e., the subgroup of all permutations o with
sgn(o) = 1).

We split

(*) = Z Uiy« - - ar,ia(r)(pl(e,-g(l), cee eia(r)) + Z Aligr(1y + + * Friigr(r) (pI(el-m(l), cee eiﬁ(r))

0€EA, o€EA,

Z ALigery + - Criger (1 €igirys -+ o5 Ciniy) + P1(Eipr 1) - o5 €ibry)

0EA,

Z ALy -+ - Arig (SEN O+ 8gN OT).
o€EA,

= Z ALigry + -+ Criger) (sgno —sgno) =0.

oEA,

Now that we know that ¢y is alternating, the universal property of /\" implies the
existence of @7 (Theorem 1.6.5).

(c) Let M denote the set of all r-element subsets of [n]. For ] € M, with J = {1 <
Ji<jo<---<jr<n}lete;:=e; A---Aej.Let A; € K such that

Z A je€y = 0.
JeM
For I € M, consider the map ¢; from (b) and apply it to the linear combination. Then

0=a1| D, es|= D, i) = A

JeM JeM

(because Aj(e;) = 0if I # J). Since I was arbitrary, A; = 0 for all I € M, and therefore
the family (ey) jepm is linearly independent.

Problem 13. For a ring A, the center is defined as
Z(A) ={xeA:VyeA:xy=yx}.
Show:
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(a) Z(A) is aring.

(b) If R is a commutative ring, then the ring A is a (unitary) associative R-algebra if
and only if there exists a ring homomorphism ¢: R — Z(A).

Solution. (a) Since A is a ring, it suffices to check that Z(A) is a subring, i.e., it suffices
toshow: 1 =14 € Z(A) and for all x, y € Z(A) also x + y € Z(A) and xy € Z(A).

Leta € Aand x,y € Z(A). Then la = a = al, so 1 € Z(A). Next, (x + y)a =
xa+ya=ax+ay =a(x+vy),sox+y e Z(A) (we used that x, y are central in the
middle equality). Finally (xy)a = x(ya)=x(ay) = (xa)y=(ax)y = a(xy), so xy € Z(A)
(the equalities where it is used that x or y are central, are highlighted in red).

(b) For didactic purposes, I write o for the multiplication on A, to make it easier to
distinguish it from the R-module structure on A..

Suppose first that A is an unitary associative R-algebra, i.e., the ring A also has an
R-module structure satisfying r(a @ b) = (ra) b = ae (rb) forallr € R, a, b € A.
Define ¢ : R — A by r + rl4. We check that ¢(R) C Z(A): Leta € A and r € R. Then
p(r)yea=(rly)ea=r(lygea)=r(aely) =ae(rly) =ae ¢(r). Therefore we can
restrict the codomain of ¢ to obtain ¢: R — A with ¢(r) =rl4.

Now we have to check that ¢ is a ring homomorphism. Indeed, ¢(1g) = 1gla =14
(this is an axiom of the module structure). Let r, s € R. Then ¢(r +s) = (r +s)14 =
rla + sl (distributivity of the module structure), and ¢(rs) = (rs)ly = r(sly) =
r(s(1ae1y)) =r(laesly) =(rls) e (sla) (the second equality is the associativity of
the module structure; 14 @ 14 = 14 because 14 is the multiplicative identity in A). Thus,
the first direction is shown.

Conversely, suppose A is a ring and ¢: R — Z(A) is a ring homomorphism. Define
RXA— Aby (r,a) — ra:=¢(r) ea.

We first check that this turns A into an R-module. We already know that (A, +)
is an abelian group. Let r, s € Rand a, b € A. Then 1ga = ¢(lg) ea =14 0a = a.
Next (rs)a = @(rs) e a = (@(r) ® ¢(s)) e a = ¢(r) ® (¢(s) ® a) = ¢(r) ® (sa) =r(sa).
Finally (r+s)a=¢(r +s)ea = (¢(r) + ¢(s)) ea=¢(r) ea+ ¢(s) ®a=ra+saand
r(a+b)=¢(r)e(a+b) =¢(r)ea+¢(r)eb=ra+rb.

To see that A is an R-algebra, we still have to check: for all a, b € Aand r € R,
it holds that r(a e b) = (ra) e b = a e (rb). We check the first equality: r(a e b) =
@(r)e (aeb) = (¢p(r)ea)eb = (ra)eb.For the second one, we actually need that ¢
maps into the center: (ra) e b = (p(r) ea)eb =ae (p(r)eb) =ae (rb).



