Problem 34. Let *A* be a finite set with subsets A_1, \ldots, A_n , and let $d_1, \ldots, d_n \ge 1$. Show: If

$$\left|\bigcup_{i\in I}A_i\right|\geq \sum_{i\in I}d_i$$

for all $I \subseteq [n]$, then there exist pairwise disjoint subsets $D_k \subseteq A_k$ with $|D_k| = d_k$.

Hint: Construct a bipartite graph in which A is one side, and the other side consists of vertices corresponding to the sets A_i with suitable multiplicity. Define the edge set of the graph so that the desired result can be derived from Hall's theorem.

Problem 35 (Sperner's Lemma). Let *M* be a finite set of cardinality *n*. The power set $\mathcal{P}(M)$ is partially ordered by set inclusion. A subset $X \subseteq \mathcal{P}(M)$ is

- a *chain* if it is totally ordered (for all $A, B \in X$ we have $A \subseteq B$ or $B \subseteq A$);
- an *antichain* if no two distinct elements of X are comparable, i.e.,

$$\forall A, B \in \mathcal{X} : A \neq B \implies A \nsubseteq B \text{ and } B \nsubseteq A.$$

It is clear that the maximal size of a chain in $\mathcal{P}(M)$ is *n*. Prove that the maximal size of an antichain in $\mathcal{P}(M)$ is $\binom{n}{\lfloor n/2 \rfloor}$.

It may be useful to proceed using the following steps.

- (a) Find an antichain of size $\binom{n}{\lfloor n/2 \rfloor}$.
- (b) If $\mathcal{P}(M)$ is a union of *r* chains, then an antichain in $\mathcal{P}(M)$ has size at most *r*.
- (c) Let $G = (\mathcal{P}(M), E)$ be the graph where there is an edge between A and B if and only if either $A \subseteq B$ and $|B \setminus A| = 1$ or, symmetrically, $B \subseteq A$ and $|A \setminus B| = 1$.

Let X_k denote the subsets of M of cardinality k (for $0 \le k \le n$) and let $G_k := G[X_k \cup X_{k+1}]$ denote the induced subgraph (for $0 \le k \le n-1$). Observe that G_k is bipartite.

Show that G_k has a matching that saturates X_k if k < n/2, and that G_k has a matching that saturates X_{k+1} if k + 1 > n/2.¹

(d) Connect the matchings to write $\mathcal{P}(M)$ as a union of (pairwise disjoint) chains; argue that there are at most $\binom{n}{\lfloor n/2 \rfloor}$ such chains.

¹In fact, by considering complements in *M*, it suffices to prove one of these statements.