Problem 14. Let *R* be a ring and let $f: M \to N$ be an *R*-morphism. Suppose that ker(f) and im(f) are finitely generated. Show that *M* is finitely generated.

Problem 15. Let *R* be a ring and *M* an *R*-module. An *R*-endomorphism of *M* is a *R*-morphism $f: M \to M$. Check that the set of all *R*-endomorphisms, $\text{End}_R(M)$, is a ring with composition as multiplication and pointwise addition. If *R* is commutative, $\text{End}_R(M)$ is even an *R*-algebra.

Problem 16. Let *R* be a ring. An *R*-module *M* is called *simple* if $M \neq 0$ (here $0 = \{0\}$ is the zero module), and the only submodules of *M* are *M* itself and 0.

- (Schur's Lemma) Let M, N be simple R-modules and $f: M \to N$ a R-morphism. Prove that either f = 0 or f is an isomorphism.
- Show: if *M* is simple, then $\operatorname{End}_R(M)$ is a division ring.