Problem 12. Let *R* be a ring. The opposite ring R^{op} is obtained from *R* by reversing the multiplication: $a \cdot_{\text{op}} b \coloneqq ba$.

- (a) Check that R^{op} is a ring.
- (b) Show that every left *R*-module *M* is a right R^{op} -module, via $mr \coloneqq rm$ for $r \in R$ and $m \in M$.
- (c) Show that the identity map is a ring isomorphism $R \cong R^{\text{op}}$ if and only if R is commutative.
- (d) Show that $\mathbb{R}_{n,n}$ is isomorphic to its opposite ring for every $n \ge 1$ (not via the identity map for $n \ge 2$).

Problem 13. For a ring A, the center is defined as

$$Z(A) \coloneqq \{ x \in A : \forall y \in A : xy = yx \}.$$

Show:

- (a) Z(A) is a ring.
- (b) If *R* is a commutative ring, then the ring *A* is a (unitary) associative *R*-algebra if and only if there exists a ring homomorphism $\varphi : R \to Z(A)$.