We discuss Problem 6 from Week 2; in addition the following problems. Again, all vector spaces are finite-dimensional.

Problem 7. Let *U*, *V* be vector spaces.

- (a) Let $u_1, \ldots, u_n \in U$ be linearly independent. For $x \in U \otimes V$ having a representation $x = \sum_{i=1}^n u_i \otimes v_i$ with $v_1, \ldots, v_n \in V$, show that $v_1, \ldots, v_n \in V$ are uniquely determined.
- (b) Show that there exists an isomorphism of vector spaces $\varphi : U \otimes V^* \to \text{Hom}(V, U)$ satisfying $\varphi(u \otimes f)(v) = f(v)u$ for all $u \in U, f \in V^*$, and $v \in V$.¹

Problem 8. Let $(V_i)_{i \in I}$ be a family of vector spaces with a finite index set *I*. Recall that the (*external*) *direct sum* is

$$\bigoplus_{i\in I} V_i = \{ (v_i)_{i\in I} : v_i \in V_i \}$$

with the componentwise vector space structure. For every $k \in I$, there is a monomorphism $\varepsilon_k : V_k \to \bigoplus_{i \in I} V_i, v \mapsto (0, \ldots, 0, v, 0, \ldots, 0)$ whose only nonzero entry is in the *k*-th component.

- (a) Show that $\bigoplus_{i \in I} V_i$ (together with $(\varepsilon_i)_{i \in I}$) satisfies the following universal property: If *W* is a vector space and $(f_i \in \text{Hom}(V_i, W))_{i \in I}$ are homomorphisms, then there exists a unique homomorphism $g: \bigoplus_{i \in I} V_i \to W$ such that $g \circ \varepsilon_i = f_i$ for all $i \in I$.
- (b) Let $(U_j)_{j \in J}$ be another family of vector spaces. Show that there is a canonical isomorphism²

$$\left(\bigoplus_{j\in J}U_j\right)\otimes\left(\bigoplus_{i\in I}V_i\right)\cong\bigoplus_{i\in I,j\in J}(U_j\otimes V_i).$$

¹The map φ is injective even for infinite-dimensional vector spaces, but its image consists of those linear maps $q \in \text{Hom}(V, U)$ having finite-dimensional image (i.e., $\dim q(V) < \infty$).

²The notion *canonical* is used here informally, and should mean that the isomorphism is given in some sense by a simple/natural/canonical formula. The notion can be made precise with concepts from category theory, cf. *natural isomorphism of functors*.

This isomorphism actually also works for infinite-dimensional vector spaces and arbitrary index sets *I*, *J*. The external direct-sum then only consists of those tuples where all but finitely many components are zero.