The first problem sheet is **optional**. Throughout, vector spaces are considered over an arbitrary but fixed field $K. V_1, \ldots, V_m, W_1, \ldots, W_m, P, U, V, W$, are vector spaces. (Keep in mind that all vector spaces considered are implicitly assumed to be finite-dimensional.)

Problem 1. Let $\varphi : V_1 \times \cdots \times V_m \to W$ be multilinear and let $T_i : W_i \to V_i$ (for $i \in [m]$) and $T : W \to V$ be linear.

- (a) The map $\psi := \varphi \circ (T_1, \ldots, T_m) : W_1 \times \cdots \times W_m \to W$, which is explicitly defined by $\psi(w_1, \ldots, w_m) = \varphi(T_1(w_1), \ldots, T_m(w_m))$, is multilinear.
- (b) The map $\psi' \coloneqq T \circ \varphi \colon V_1 \times \cdots \times V_m \to V$, which is explicitly defined by $\psi'(v_1, \ldots, v_m) = T(\varphi(v_1, \ldots, v_m))$, is multilinear.

Problem 2. Let $\varphi : V_1 \times \cdots \times V_m \to P$ be a tensor map, and let $\psi : V_1 \times \cdots \times V_m \to W$ be a multilinear map.

- (a) Prove that ψ is a tensor map if and only if there exists a linear map $T: W \to P$ with $\varphi = T \circ \psi$.
- (b) Suppose that ψ is also a tensor map. Show that the map *T* from (a)
 - is unique if and only if $\langle \operatorname{im} \psi \rangle = W$;
 - can be chosen to be a bijection if and only if dim(P) = dim(W) (but not necessarily (im ψ) = W).

The definitions necessary for the last problem can be found at the beginning of Chapter 1.2 of the notes. (No results of Chapter 1.2 are needed.)

- **Problem 3.** (a) Let $u, u' \in U, v, v' \in V$ and $\lambda \in K$. Show that $\lambda(u \otimes v) = (\lambda u) \otimes v = u \otimes (\lambda v)$, that $(u + u') \otimes v = u \otimes v + u' \otimes v$, and that $u \otimes (v + v') = u \otimes v + u \otimes v'$. (*Note:* this is trivial if you understand the definitions.)
- (b) Let $u \otimes v \in U \otimes V$. Show that if u = 0 or v = 0, then $u \otimes v = 0$.
- (c) Let $\{e_1, \ldots, e_k\}$ be a basis of U and $\{f_1, \ldots, f_l\}$ be a basis of V. Show that

$$\{e_i \otimes f_j : i \in [k], j \in [l]\}$$

is a basis of $U \otimes V$.

(*Hint for (c*): You have to show that the given vectors are linearly independent. Do so by finding suitable functionals using the universal factorization property)