Final Exam for Problem Session (UE) 28.1.2021

Problem 1. A sequence $(a_n)_{n\geq 0}$ in \mathbb{R} satisfies

$$6a_n = a_{n-2} + a_{n-1}$$
 $(n \ge 2),$ $a_0 = -1,$ $a_1 = -1.$

Determine the asymptotic growth of $(a_n)_{n \ge 0}$.

Problem 2. Let *A* be a finite set with subsets A_1, \ldots, A_n , and let $d_1, \ldots, d_n \ge 1$. Show: If

$$\left|\bigcup_{i\in I}A_i\right|\geq \sum_{i\in I}d_i$$

for all $I \subseteq [n]$, then there exist pairwise disjoint subsets $D_k \subseteq A_k$ with $|D_k| = d_k$.

Hint: Construct a bipartite graph in which A is one side, and the other side consists of a suitable number of copies of the sets A_k . Define the edge set of the graph so that the desired result can be derived from Hall's theorem.

Problem 3. Let *V* be a finite-dimensional vector space over a field *K*. Recall that the multiplication on the exterior algebra $\bigwedge V = \bigoplus_{r>0} \bigwedge^r V$ satisfies

$$(v_1 \wedge \cdots \wedge v_r) \wedge (w_1 \wedge \cdots \wedge w_s) = v_1 \wedge \cdots \wedge v_r \wedge w_1 \wedge \cdots \wedge w_s$$

for $v_i, w_j \in V$. The multiplication is extended *K*-linearly to all of $\bigwedge V$.

Show: if $\alpha \in \bigoplus_{r \ge 0} \bigwedge^{2r+1} V$, that is, α is a sum of simple alternating tensors of *odd* degree, then $\alpha \land \alpha = 0 \in \bigwedge V$.

Problem 4. Let *R* be a ring and consider the following commutative diagram of *R*-modules and *R*-morphisms.

Suppose that the columns are exact and the bottom two rows are exact. Show that the top row is exact at B_1 .