Exercise Sheet 13

Due 21.1.2021

Rings are assumed to be unital; ring homomorphisms are assumed to preserve the multiplicative identity. Problems 3 and 4 make use of some material from week 13 (cf. Section 5.3 of the Lecture Notes)

Problem 1. Let *R* be a ring and let *M* be an *R*-module. Show that a map $f : \mathbb{R}^n \to \mathbb{R}$ is an *R*-morphism if and only if there exist $m_1, \ldots, m_n \in M$ such that

$$f(r_1,\ldots,r_n)=r_1m_1+\cdots+r_nm_n \qquad \text{for all } r_1,\ldots,r_n\in R.$$

Conclude that *M* is finitely generated if and only if there exists an *R*-epimorphism $R^n \rightarrow M$ for some $n \ge 0$.

Problem 2. Let *R* be a ring and let $f : M \to N$ be an *R*-morphism. Suppose that ker(*f*) and im(*f*) are finitely generated. Show that *M* is finitely generated.

Problem 3. Consider the following commutative diagram of *R*-modules and *R*-morphisms, in which rows and columns are exact.

Prove $\ker(h \circ e) = \operatorname{im} v + \operatorname{im} d$.

Problem 4. If

$$0 \longrightarrow B \xrightarrow{f} E \xrightarrow{g} A \longrightarrow 0$$

is a short exact sequence of *R*-modules, the triple (f, E, g) is an *extension of A by B*.

- (a) Prove that, for any two *R*-modules *A*, *B*, at least one extension of *A* by *B* exists.
- (b) Two extensions (f_1, E_1, g_1) and (f_2, E_2, g_2) of *A* and *B* are *equivalent* if there exists an *R*-morphism $h: E_1 \rightarrow E_2$ such that $h \circ f_1 = f_2$ and $g_2 \circ h = g_1$. Prove that such an *R*-morphism *h* is an isomorphism.
- (c) Show that the following two are non-equivalent short exact sequences

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow \mathbb{Z}_2 \times \mathbb{Z}_4 \longrightarrow \mathbb{Z}_4 \longrightarrow 0$$
$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow \mathbb{Z}_8 \longrightarrow \mathbb{Z}_4 \longrightarrow 0,$$

i.e., that these are extensions of \mathbb{Z}_4 by \mathbb{Z}_2 that are not equivalent.