Exercise Sheet 12

Due 14.1.2021

On this sheet all rings are assumed to be unital; every ring homomorphism is assumed to preserve the multiplicative identity.

Problem 1. Let $R = (R, +, \cdot)$ be a ring. For $a, b \in R$ define $a \cdot_{op} b := b \cdot a$. Show that

- (a) $R^{\text{op}} := (R, +, \cdot_{\text{op}})$ is a ring. (It is called the *opposite ring* of R.)
- (b) Every left *R*-module *M* is a right R^{op} -module with mr := rm for $r \in R$, $m \in M$.
- (c) If *R* is commutative, then trivially $R \cong R^{op}$. Is the converse true?

Problem 2. Let M be an abelian group and let $\operatorname{End} M$ be the set of all endomorphisms on M, that is, the set of all group homomorphisms $f: M \to M$. Show that

- (a) $(\operatorname{End} M, +, \circ)$ is a ring, where (f + g)(x) := f(x) + g(x) for $f, g \in \operatorname{End}(M)$ and $x \in M$.
- (b) if *R* is a ring and $\mu : R \to \operatorname{End} M$ a ring homomorphism, then *M* is an *R*-module under the action $R \times M \to M$ given by $(\lambda, m) \mapsto \lambda m = (\mu(\lambda))(m)$.
- (c) if *R* is a ring and *M* is an *R*-module, for every $\lambda \in R$, the map $\mu_{\lambda} \colon M \to M$, $m \mapsto \lambda m$ is a group endomorphism of *M*, and $\mu \colon R \to \operatorname{End}(M)$, $\lambda \mapsto \mu_{\lambda}$ is a ring homomorphism.

Problem 3. Let $T: V \to V$ be a linear endomorphism over a k-vector space V.

(a) Check that the vector space V can be made into a k[x]-module, defining multiplication as follows: if $f = \sum_{i=0}^{m} c_i x^i \in k[x]$ and $v \in V$, then

$$f \cdot v \coloneqq \sum_{i=0}^{m} c_i T^i(v),$$

where T^i denotes the *i*-fold composition (that is $T^0 = \mathrm{id}_v$ and $T^i := T^{i-1} \circ T$ for $i \ge 1$).

(b) Show that $W \subseteq V$ is a k[x]-submodule of V if and only if W is a k-vector subspace of V and $T(W) \subseteq W$.

Problem 4. Let *M* be an *R*-module. If *S* is a non-empty subset of *M*, define the *annihilator of S in R* to be

$$\operatorname{Ann}_R S = \{ r \in R \mid \forall x \in S : rx = 0_M \}.$$

- (a) Show that $\operatorname{Ann}_R S$ is a left ideal of R and that it is a two-sided ideal whenever S is a submodule of M.
- (b) Let M be an R-module. If $r, s \in R$ show that

$$r - s \in \operatorname{Ann}_R M \Longrightarrow \forall x \in M : rx = sx.$$

Deduce that M can be considered as an $R/\operatorname{Ann}_R M$ -module. Show that the annihilator of M in $R/\operatorname{Ann}_R M$ is zero.