Exercise Sheet 11 Due 17.12.2020

Problem 1. Identify $\wedge^2(\mathbb{R}^3)$ with \mathbb{R}^3 by identifying $e_1 \wedge e_2$ with e_3 , $e_2 \wedge e_3$ with e_1 and $e_3 \wedge e_1$ with e_2 . Show that under this identification, the exterior product $v \wedge w \in \wedge^2(\mathbb{R}^3) = \mathbb{R}^3$ is the same as the cross product $v \times w \in \mathbb{R}^3$.

Problem 2. Let *K* be a field and let $A = (a_{i,j})_{i,j \in [n]}$ be an $n \times n$ -matrix with entries in *K*. Denote by e_1, \ldots, e_n the standard basis of K^n . Show that

$$(Ae_1) \wedge \cdots \wedge (Ae_n) = \sum_{\pi \in \mathcal{S}_n} \operatorname{sgn}(\pi) a_{1,\pi(1)} \cdots a_{n,\pi(n)} e_1 \wedge \cdots \wedge e_n.$$

Problem 3. Let *V* be a (finite-dimensional) vector space over a field *K*.

- (a) $v_1, \ldots, v_k \in V$ are linearly independent if and only if $v_1 \wedge \cdots \wedge v_k \neq 0$ (in $\bigwedge^k V$).
- (b) Let $v_1, \ldots, v_k \in V$ and $w_1, \ldots, w_k \in V$ be two tuples of linearly independent vectors. Then $\langle v_1, \ldots, v_k \rangle = \langle w_1, \ldots, w_k \rangle$ if and only if there exists $c \in K^{\times}$ such that

 $v_1 \wedge \cdots \wedge v_k = cw_1 \wedge \cdots \wedge w_k.$

(Thus *k*-dimensional subspaces of *V* are in bijection with *pure* tensors in $\wedge^k V$ up to scalar multiples.)

