Exercise Sheet 10

Due 10.12.2020

Throughout, vector spaces are considered over an arbitrary but fixed field *K* and assumed to be finite-dimensional.

Problem 1. Let *U*, *V* be vector spaces.

- (a) Let $u_1, \ldots, u_n \in U$ be linearly independent. For $x \in U \otimes V$ having a representation $x = \sum_{i=1}^n u_i \otimes v_i$ with $v_1, \ldots, v_n \in V$, show that $v_1, \ldots, v_n \in V$ are uniquely determined.
- (b) Show that there exists an isomorphism of vector spaces $\varphi : U \otimes V^* \to \text{Hom}(V, U)$ satisfying $\varphi(u \otimes f)(v) = f(v)u$ for all $u \in U$, $f \in V^*$, and $v \in V$.¹

Problem 2. Let $V_1, \ldots, V_m, W_1, \ldots, W_m$ be vector spaces. Show that there is an isomorphism

$$\bigotimes_{i=1}^{m} \operatorname{Hom}(V_{i}, W_{i}) \to \operatorname{Hom}\left(\bigotimes_{i=1}^{m} V_{i}, \bigotimes_{i=1}^{m} W_{i}\right), \quad T_{1} \otimes \cdots \otimes T_{m} \mapsto T_{1} \otimes \cdots \otimes T_{m}$$

Careful: The notation $T_1 \otimes \cdots \otimes T_m$ is overloaded and has a different definition on the left and the right side above! This isomorphism provides a justification to use the same notation.²

Problem 3. Let $(V_i)_{i \in I}$ be a family of vector spaces with a finite index set *I*. Recall that the (*external*) *direct sum* is

$$\bigoplus_{i\in I} V_i = \{ (v_i)_{i\in I} : v_i \in V_i \}$$

with the componentwise vector space structure. For every $k \in I$, there is a monomorphism $\varepsilon_k : V_k \to \bigoplus_{i \in I} V_i, v \mapsto (0, \ldots, 0, v, 0, \ldots, 0)$ whose only nonzero entry is in the *k*-th component.

(a) Show that $\bigoplus_{i \in I} V_i$ (together with $(\varepsilon_i)_{i \in I}$) satisfies the following universal property: If *W* is a vector space and $(f_i \in \text{Hom}(V_i, W))_{i \in I}$ are homomorphisms, then there exists a unique homomorphism $g: \bigoplus_{i \in I} V_i \to W$ such that $g \circ \varepsilon_i = f_i$ for all $i \in I$.

¹The map φ is injective even for infinite-dimensional vector spaces, but its image consists of those linear maps $g \in \text{Hom}(V, U)$ having finite-dimensional image (i.e., dim $g(V) < \infty$).

²This isomorphism depends crucially on V_i , W_i being finite-dimensional vector spaces. For a tensor product of modules, it need not be injective nor surjective.

(b) Let $(U_j)_{j \in J}$ be another family of vector spaces. Show that there is a canonical isomorphism³

$$\left(\bigoplus_{j\in J}U_j\right)\otimes\left(\bigoplus_{i\in I}V_i\right)\cong\bigoplus_{i\in I,j\in J}(U_j\otimes V_i).$$

³This one actually works also for infinite-dimensional vector spaces and arbitrary index sets I, J. The external direct-sum then only consists of those tuples where all but finitely many components are zero.