Tr 1. Seien $n \in \mathbb{N}$, $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{Z}$. Zeigen Sie durch Induktion nach n: Ist $a_i \equiv b_i \mod m$ für alle $i \in [1, n]$, so folgt $a_1 \cdots a_n \equiv b_1 \cdots b_n \mod m$.

Tr 2. Sei $m \in \mathbb{N}$. Ist $R \subset \mathbb{Z}$ ein vollständiges Restsystem modulo m und $a \in \mathbb{Z}$, so ist auch $a + R = \{a + r \mid r \in R\}$ ein vollständiges Restsystem modulo m.

Ü 1. Bestimmen Sie jeweils alle $x \in \mathbb{Z}$, die folgende lineare Kongruenzen erfüllen:

- (a) $3x \equiv 5 \mod 10$,
- (b) $2x \equiv 4 \mod 8$,
- (c) $52x \equiv 135 \mod 87$.

Ü 2. Bestimmen Sie die letzten beiden Dezimalziffern von 9^{9^9} . (*Hinweis*: Zeigen Sie zuerst $9^9 = 9 + 10k$ mit $k \in \mathbb{N}_0$ und betrachten Sie 9^{10} modulo 100.)

Ü 3. Im einheitlichen Euro-Zahlungsverkehrsraum werden Kontonummern im IBAN Format angegeben. Jede solche IBAN enthält eine Prüfsumme, die gegen die häufigsten Formen von Tipp- bzw. Übertragungsfehlern schützen soll.

- (1) Informieren Sie sich über den Aufbau einer IBAN und das Verfahren zum Bestimmen der Prüfsumme.
- (2) Überprüfen Sie, dass die folgende IBAN den Konventionen für eine österreichische IBAN entspricht und eine gültige Prüfsumme aufweist:

(Das ist leider notwendigerweise ein wenig rechenaufwendig. Versuchen Sie durch geschicktes Ausnutzen der Rechenregeln für Kongruenzen den Aufwand möglichst gering zu halten.)

- (3) Beweisen Sie, dass durch die Prüfsumme folgende Fehler stets entdeckt werden:
 - Falsche Eingabe eines einzelnen Zeichens.
 - Einmaliges Vertauschen von zwei benachbarten Zeichen.

Für die folgenden Aufgaben ist Stoff aus der Vorlesungseinheit vom 6.12. hilfreich (insbesondere Restklassenringe).

Tr 3. Sei R ein Ring und $a \in R$ eine Einheit. Zeigen Sie, analog dem Beweis für Gruppen, dass das multiplikativ inverse Element von a eindeutig bestimmt ist.

Ü 4. Für eine endliche Menge $\emptyset \neq M$ und eine Verknüpfung $*: M \times M \to M$ kann man eine *Verknüpfungstafel* aufschreiben: Hierbei handelt es sich um einen Tabelle, deren Spalten und Zeilen jeweils den Elementen von M entsprechen. Im Eintrag zur Zeile $m \in M$ und Spalte $n \in N$ steht das Verknüpfungsergebnis m * n.

Bestimmen Sie die Verknüpfungstafeln für ($\mathbb{Z}/6\mathbb{Z}$, +) und ($\mathbb{Z}/6\mathbb{Z}$, ·). Welche Eigenschaften können Sie direkt aus der Verknüpfungstafel ablesen?

- **Tr 4.** Sei R ein Ring. Ein Element $a \in R$ heißt $k\ddot{u}rzbar$ wenn gilt: Sind $b, c \in R$ mit ab = ac oder ba = ca, so folgt b = c. Zeigen Sie: Jedes invertierbare Element von R ist kürzbar.
- Ü 5. (1) Ist $p \in \mathbb{P}$ und $x \in \mathbb{Z}$, so ist $x^2 \equiv 1 \mod p$ genau dann wenn $x \equiv 1 \mod p$ oder $x \equiv -1 \mod p$.
 - (2) Für $p \in \mathbb{P}$ gilt $(p-2)! \equiv 1 \mod p$. (*Hinweis:* Arbeiten Sie im Restklassenring $\mathbb{Z}/p\mathbb{Z}$ und gruppieren Sie die Elemente des Produkts in Paare α , α^{-1} .)
 - (3) (*Satz von Wilson*) Sei $m \in \mathbb{N}_{\geq 2}$. Dann ist m genau dann eine Primzahl, wenn gilt $(m-1)! \equiv -1 \mod m$.