5* (Ein Normalteilerkriterium). Es sei G eine endliche Gruppe und p der kleinste Primteiler von |G|. Zeigen Sie: Ist $H \leq G$ eine Untergruppe mit (G:H) = p, so ist H ein Normalteiler von G. (Hinweis: Lassen Sie G mittels g*(xH) = gxH für alle $g, x \in G$ auf dem Nebenklassenraum G/H operieren.)

Beweis: Wir beobachten zuerst: Ist xH = yH mit $x, y \in H$, so ist gxH = gyH für alle $g \in G$. [Denn: Aus xH = yH folgt $y^{-1}x \in H$. Es ist also $y^{-1}x = y^{-1}g^{-1}gx = (gy)^{-1}(gx) \in H$, und damit gxH = gyH.]

Somit können wir eine Abbildung $*: G \times G/H \to G/H$ durch g * (xH) = gxH für alle $g, x \in G$ definieren. Für alle $x, g, g' \in G$ ist e * (xH) = exH = xH und g' * (g * xH) = g' * (gxH) = g'gxH = (g'g) * xH. Damit ist * eine Operation von G auf G/H.

Aus Übung 4 erhalten wir einen Homomorphismus $\sigma \colon G \to \operatorname{Perm}(G/H)$, wobei für alle $g, x \in G$ gilt: $\sigma(g)(xH) = g * xH = gxH$. Dabei gilt:

- 1. $\ker(\sigma) \subset H$, ¹ [Beweis: Sei $g \in \ker(\sigma)$. Dann gilt $gxH = \sigma(g)(xH) = xH$ für alle $x \in G$. Insbesondere, mit x = e, folgt gH = H und somit $g \in H$.]
- 2. $|\operatorname{Perm}(G/H)| = p!$. [Nach Voraussetzung ist (G:H) = p, und somit $\operatorname{Perm}(G/H) \cong S_p$.]

Wegen $G/\ker(\sigma)\cong\sigma(G)$ und weil $\sigma(G)$ eine Untergruppe von $\mathrm{Perm}(G/H)$ ist, liefert der Satz von Lagrange also:

$$(G:H) = p \mid (G:\ker(\sigma)) \mid p! = p(p-1) \cdots 2 \cdot 1.$$

Außerdem teilt $(G: \ker(\sigma))$ auch |G|, und somit gilt $(G: \ker(\sigma)) \mid \operatorname{ggT}(p!, |G|)$. Weil p der kleinste Primteiler von |G| ist, und jeder Primteiler von $\frac{p!}{p} = (p-1)!$ echt kleiner ist als p, ist $\operatorname{ggT}(p!, |G|) = p$. Damit ist $p = (G: \ker(\sigma))$. Wegen $\ker(\sigma) \subset H \subset G$ ist also $\ker(\sigma) = H$. Somit ist H ein Normalteiler von G und das war zu zeigen.

Bemerkung. Ist p = 2 und $p \mid |G|$, so ist p natürlich schon der kleinste Primteiler von |G|. Wir erhalten als Spezialfall das aus der Einführung in die Algebra bekannte Resultat: Ist $H \leq G$ eine Untergruppe vom Index 2, so ist H ein Normalteiler von G.

Genauer gilt $\ker(\sigma) = \bigcap_{x \in H} xHx^{-1}$, das ist der so genannte normale Kern von H in G. Am einfachsten zeigt man dazu, im allgemeineren Setting von Beispiel 4, dass gilt $\ker(\sigma) = \bigcap_{m \in M} G_m$. Mit der Operation in Beispiel 5 ist dann $G_{xH} = \{ g \in G \mid gxH = xH \}$. Wegen $gxH = xH \Leftrightarrow x^{-1}gx \in H \Leftrightarrow g \in xHx^{-1} \text{ folgt } G_{xH} = xHx^{-1}$.