Throughout, let $(a_n)_{n\geq 0}$ be a strict \mathbb{Q} -LRS of order *d*.

Exercise 1. If $(a_n)_{n\geq 0}$ has at least *d* consecutive zeros, then it is identical to 0.

Exercise 2. The subsequence $(a_{Nn+r})_{n\geq 0}$ is a (strict) LRS for all $N \geq 1, r \geq 0$.

Exercise 3. If $(a_n)_{n\geq 0}$ is nonzero but has infinitely many zeros, then it has two eigenvalues $\lambda \neq \lambda' \in \mathbb{Q}$ such that $(\lambda'/\lambda)^m = 1$ for some $m \geq 1$. Such an LRS is called *degenerate*.

(Here $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q} ; you can also work in \mathbb{C} .)

Exercise 4. It is possible to compute $N \in \mathbb{N}$, $k_1, \ldots, k_r \ge 0$ such that each $(a_{Nn+k_i})_{n\ge 0}$ is identically zero, and such that $(a_n)_{n\ge 0}$ has only finitely many other zeros.