Exercise 1. Determine exponential polynomial representations and the generating series of the following LRS (over \mathbb{C}):

- (a) $a_n = a_{n-2}$ for $n \ge 2$ with $a_0 = 2, a_1 = 0$,
- (b) $a_n = 4a_{n-1} 5a_{n-2} + 2a_{n-3}$ for $n \ge 3$, with $a_0 = 3$, $a_1 = 11$, $a_2 = 22$.

Exercise 2. Show that, for all $j \ge 1$, in the formal power series ring K[[x]],

$$\frac{1}{(1-x)^j} = \sum_{n=0}^{\infty} \binom{n+j-1}{j-1} x^n.$$

(Say, for char K = 0, but this also works in positive characteristic p > 0 if one interprets $\binom{n+j-1}{j-1}$ as the reduction of the binomial coefficient modulo p.)

Exercise 3. Where is char K = 0 used in Proposition 1.3? What happens if char K = p > 0?

Exercise 4. For an algebraically closed field of characteristic 0 (e.g., \mathbb{C}), prove the bijection between strict LRS and exponential polynomials in the final remark.