Aufgabe 5. Bestimmen Sie T(280) und T(60). Bestimmen Sie weiters ggT(280, 60) direkt mit Hilfe der Definition des größten gemeinsamen Teilers.

Hinweis: Überlegen Sie sich, wie Sie T(n) aus $\{d \in \mathbb{N}_0 : d \mid n, d \leq \sqrt{n}\}$ bestimmen können.

Aufgabe 6. Welche der folgenden Aussagen gelten für alle $a, b, c \in \mathbb{Z}$ (Beweis oder Gegenbeispiel)?

- (a) $a \mid b + c \implies a \mid b \text{ oder } a \mid c$.
- (b) $a \mid b$ und $a \mid c \implies a^2 \mid bc$.
- (c) $a \mid bc \implies a \mid b \text{ oder } a \mid c$.

Aufgabe 7. Die Folge der Fibonacci-Zahlen ist definiert durch

$$F_0 = 0$$
, $F_1 = 1$ und $F_n = F_{n-2} + F_{n-1}$ für $n \ge 2$.

Zeigen Sie:

- (a) $ggT(F_n, F_{n-1}) = 1 \text{ für } n \ge 1.$
- (b) $F_{m+n} = F_{m+1}F_n + F_mF_{n-1}$ für $m \ge 0, n \ge 1$.
- (c) Aus $m \mid n$ folgt $F_m \mid F_n$ für $m, n \ge 0$.

Hinweis: Induktion. Für Teil (c) ist (b) hilfreich.

Aufgabe 8. Man beweise, dass der Ausdruck

$$\frac{n(n+1)(2n+1)}{6}$$

für jedes $n \ge 1$ eine ganze Zahl ergibt.

Hinweis: Nach dem Satz über die Division mit Rest besitzt n genau eine der sechs Formen 6k + r mit $r \in [0, 5]$. Man betrachte jeden dieser Fälle.