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Abstract—The (left) linear hull of a weighted automaton over
a field is a topological invariant. If the automaton is minimal, the
linear hull can be used to determine whether or not the automaton
is equivalent to a deterministic one. Furthermore, the linear hull
can also be used to determine whether the minimal automaton
is equivalent to an unambiguous one. We show how to compute
the linear hull, and thus prove that it is decidable whether or
not a given automaton over a number field is equivalent to a
deterministic one. In this case we are also able to compute an
equivalent deterministic automaton. We also show the analogous
decidability and computability result for the unambiguous case.
Our results resolve a problem posed in a 2006 survey by Lombardy
and Sakarovitch.

Index Terms—weighted automata, determinization, sequential,
deterministic, unambiguous, linear hull

I. INTRODUCTION

Every unweighted (finite) automaton is equivalent to a deter-
ministic automaton 

1
 , and there is a determinization procedure

to find such an automaton. For automata with weights in a
semiring K (in short, K-automata), this is no longer true. More
generally, a K-automaton is unambiguous if (i) between each
two states p and q and for every word w there is at most one
path from p to q labeled by w, and (ii) every word has at most
one accepting path [ 40 , Definition I.1.11]. For trim automata (i)
and (ii) are equivalent and one may be omitted. Deterministic
K-automata are unambiguous, but not every unambiguous K-
automaton is equivalent to a deterministic one; furthermore
not every K-automaton is equivalent to an unambiguous one.
Here, two K-automata are equivalent if they recognize the
same K-rational series.

This leads to the following decidability problems for a K-
automaton A.

• Deterministic? Is there a deterministic K-automaton A′

that is equivalent to A?
• Unambiguous? Is there an unambiguous K-automaton A′

that is equivalent to A?
If these questions have a positive answer, it is furthermore
desirable to actually produce a corresponding K-automaton.

J. P. Bell was supported by NSERC grant RGPIN-2022-02951.
1deterministic automata also called sequential or subsequential [ 40 , Remark

V.1.2] automata in the weighted case

These questions have received particular attention when K
is a tropical semiring [ 11 ], [ 30 ], [ 1 ], [ 25 ], [ 24 ], [ 23 ], [ 17 ],
[ 32 ]; the surveys [ 29 ], [  31 ] are a good starting point. Similar
question have been studied for weighted tree automata [ 10 ],
[ 14 ], [ 19 ], [ 37 ]. When K is a field, even when K = Q, the
question was still essentially completely open until recently. It
appears as an open problem in the 2006 survey by Lombardy
and Sakarovitch [ 29 , Problem 1]. For unary alphabets and
K = Q, the problem Deterministic? is decidable by a recent
result of Kostolányi [ 26 ]. In the same setting Unambiguous?
is decidable by a result of Berstel and Mignotte [  6 , Théorème
3] together with a classical theorem of Pólya [ 7 , Chapter 6.3].

In [ 3 ] a new invariant for an automaton with weights in a
field, the linear hull, was introduced, and it was used to prove a
multivariate version of Pólya’s theorem [ 3 , Theorem 1.2]. This
led to a characterization of K-rational series recognized by
deterministic, respectively unambiguous, automata in terms
of the linear hull of a minimal automaton for the series.
Unfortunately, the linear hull is defined as a topological closure
(in the linear Zariski topology) of the reachability set of an
automaton, making its computability a non-trivial problem.

We show that the problems Deterministic? and Unam-
biguous? are decidable over number fields 

2
 (Theorem  1 ).

Furthermore, our work yields an algorithm to compute an
equivalent unambiguous, respectively, deterministic weighted
automaton if it exists. This uses the main theorems of [ 3 ] and
a computability result for the linear hull (Theorem  3 ).

The key point is the computation of the linear Zariski closure
of a matrix semigroup (a subsemigroup of the semigroup of all
d×d-matrices Md(K)) generated by a closed set. Our approach
is inspired by the computation of the Zariski closure of such
semigroups by Hrushovski, Ouaknine, Pouly, and Worrell [  22 ],
which builds on the case for groups by Derksen, Jeandel, and
Koiran [ 13 ]; see also [ 33 ]. However, our approach stays almost
entirely within the linear realm (see Remark  40 ).

Our approach does not yield any bounds on the runtime. The
output size (the size of the linear hull) can be super-exponential
in the input size. Namely, if K = Q and A has d states, then
the linear hull can be of size 2d−1d! over a two-letter alphabet

2The restriction to number fields is not essential, and only made for simplicity
of the presentation.979-8-3503-3587-3/23/$31.00 ©2023 IEEE



(Remarks  7 and  41 ); by comparison, in the unary case, the
algorithm of Kostolányi needs at most O(d3) operations.

In the group case (section  IV ), the Burnside–Schur theorem
yields an upper bound on the size of a transversal modulo
the component containing the identity, giving a bound on the
output size that is double-exponential in d (independent of
the number of generators; Remark  41 ). In the semigroup case
(section  V ), this can be combined with a recursion lemma
(Lemma  37 ), to get a similar double-exponential upper bound
(now dependent on the number of generators). Further, our
results hold for all fields over which it is possible to do linear
algebra exactly, and they can be extended to integers as well.
For reasons of space and simplicity we relegate details of this
and the bounds on the output size to the arXiv version [ 4 ].

Notation. Throughout, let K be a number field (a finite-
dimensional field extension of Q), and let d ≥ 0. Let Md(K)
be the semigroup of d × d-matrices. Further, I ∈ Md(K)
denotes the identity matrix, and Eij ∈ Md(K) denotes the
ij-th elementary matrix. If X is a subset of a semigroup S,
then ⟨X⟩ is the subsemigroup generated by X . If a, b ∈ Z,
then [a, b] := {x ∈ Z : a ≤ x ≤ b } is the discrete interval.
Background on automata can be found in [ 7 ], [ 15 ], [ 40 ].

Acknowledgements. We thank the reviewers for innumerable
valuable comments on improving the presentation of the paper
for the LICS community. We have tried to implement them as
far as possible; any remaining shortcomings are our own.

II. MAIN RESULTS: DECIDABILITY OF DETERMINISTIC?
AND UNAMBIGUOUS?

In this section we state the main results of the present paper
(Theorems  1 and  3 ) and show how Theorem  1 follows from
Theorem  3 and the results in [ 3 ]. The proof of Theorem  3 will
then take up the rest of the paper.

We work with row vectors and apply matrices on the right.
A d-dimensional linear representation over the alphabet Σ
consists of a row vector u ∈ K1×d, a monoid homomorphism
µ : Σ∗ →Md(K), and a column vector v ∈ Kd.

To interpret (u, µ, v) as a K-automaton A, we associate to
it a directed graph with edge labels and set of vertices [1, d]
as follows: u = (u1, . . . , ud) is the vector of initial weights,
with an incoming edge to state i with weight ui. Analogously
v is interpreted as vector of terminal weights. For each a ∈ Σ,
the matrix µ(a) is an incidence matrix encoding the transition
weights of the letter a: the ij-entry of µ(a) corresponds to the
weight of the transition from state i to the state j labeled by a,
and it is recorded by putting an edge with label µ(a)a (omitting
the edge if µ(a) = 0). In this way, there is a one-to-one
correspondence between linear representations and weighted
automata (see [ 7 , Chapter 1.6] for a more complete treatment).

An accepting path for a word w is a path in the graph that
is labeled by w and leads from an input state (a state with
nonzero input weight) to a terminal state (a state with nonzero
terminal weight). We always assume that our automata are trim
(every state lies on some accepting path).

Given any word w ∈ Σ∗ one can compute the output
A(w) := uµ(w)v of the K-automaton by

1) for each accepting path labeled by w, taking the product
of the weights along each path;

2) summing up these values over all accepting paths for w.
The task of finding all accepting paths for w becomes

computationally easier if the automaton is
1) deterministic, that is, there exists at most input state and

for every state i and every letter a ∈ Σ, there is at most
one outgoing edge from i that is labeled by a (i.e., every
row of µ(a) has at most one nonzero entry); or

2) unambiguous, that is, for every word w there exists at
most one accepting path.

Every deterministic automaton is unambiguous.
To an automaton we associate its behavior, the K-rational

series
∑

w∈Σ∗ A(w)w. Two automata are equivalent if they
have the same behavior. Our main theorem is the following.

Theorem 1. Let A be a K-automaton. Then it is decidable if
A is equivalent to

1) a deterministic K-automaton;
2) an unambiguous K-automaton.

In both cases the corresponding deterministic (or unambiguous)
K-automaton is computable.

To prove Theorem  1 , we will make use of the following linear
version of the Zariski topology introduced in [ 3 , Section 3].
The same topology previously appeared in work of Colcombet
and Petrisan [  12 ] under the name of “glued spaces” — their
minimal cover [ 12 , p.6] of a set of vectors is the closure of
that set in the linear Zariski topology.

Definition 2. On a finite-dimensional vector space V over K,
the linear Zariski topology is the topology in which a set is
closed if and only if it is a finite union of vector subspaces.

The empty set is represented by the empty union. By
definition, a (not necessarily closed) nonempty subset X ⊆ V
is irreducible, if whenever X ⊆ Y1 ∪ Y2 with closed sets Y1

and Y2, then already X ⊆ Y1 or X ⊆ Y2. Since a vector space
cannot be covered by finitely many proper subspaces (due to K
being infinite), one sees easily that the irreducible closed sets
are precisely the vector subspaces of V , and every closed set
can be expressed uniquely as the finite union of its irreducible
components (i.e., the maximal irreducible subsets). 
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Most of the paper is devoted to the following.

Theorem 3. Let X ⊆Md(K) be a closed subset (given by a
list of basis vectors) and let S = ⟨X⟩ be the semigroup gener-
ated by X . Then the linear Zariski closure S is computable
(as a list of basis vectors).

Theorem  3 immediately yields the following corollary, by
taking X to be the union of the n one-dimensional spaces
generated by A1, . . . , An.

Corollary 4. Let A1, . . . , An ∈ Md(K). Then the linear
Zariski closure of the semigroup ⟨A1, . . . , An⟩ is computable.

3In fact, V is a noetherian topological space, background on which can be
found in [ 9 , §II.4.1 and §II.4.2] or [ 41 , Sections  004U and  0050 ].

https://stacks.math.columbia.edu/tag/004U
https://stacks.math.columbia.edu/tag/0050


We are now able to define the following crucial invariant of
a weighted automaton over a field.

Definition 5. Let A be a K-automaton on the alphabet Σ with
linear representation (u, µ, v). The (left) linear hull of A is
the set

uµ(Σ∗) = {uµ(w) : w ∈ Σ∗ },

that is, it is the closure in the linear Zariski topology of the
reachability set {uµ(w) : w ∈ Σ∗ }.

The linear hulls of two equivalent K-automata need not
coincide. However, since K is a field, there always exist
minimal linear representations, and these are unique up to
conjugation by an invertible matrix (corresponding to a change
of basis of the vector space). Correspondingly, the linear
hulls of minimal linear representations only differ by a linear
isomorphism on the ambient space. In particular, the number of
irreducible components and their dimensions are independent
of the choice of minimal linear representation. To a K-
rational series we associate the linear hull of a minimal linear
representation of the series.

The linear hull is not left/right symmetric. In fact the number
of its irreducible components, on the left/right need not coincide,
and neither need the dimensions [ 3 , Example 3.8].

Corollary 6. Let A be a K-automaton. Then the linear hull
of A is computable.

Proof. By Corollary  4 we can compute the linear Zariski
closure of the finitely generated matrix semigroup µ(Σ∗). Since
φ : Md(K) → K1×d, A 7→ uA is K-linear, it is continuous
in the linear Zariski topology and also closed (i.e., it maps
closed sets to closed sets). Therefore uµ(Σ∗) = uµ(Σ∗).

Constructing the following automaton Â is key in the
decidability problem.
Construction of Â. Given a K-automaton A, with minimal lin-
ear representation (u, µ, v), and linear hull X = W1∪· · ·∪Wk

(where W1, . . . , Wk are irreducible components, with mi :=
dimWi), we can construct an equivalent K-automaton Â, with
linear representation (u′, µ′, v′), as follows (see [ 3 , Lemma
3.13] for a rigorous treatment): Renumbering the components,
without restriction u ∈ W1. For each a ∈ Σ and i ∈ [1, k]
there exists some j ∈ [1, k] such that Wiµ(a) ⊆Wj . Here, j
need not be unique, but for each a we can choose a transition
function fa : [1, k]→ [1, k] such that Wiµ(a) ⊆Wfa(i) for all
a ∈ Σ and i ∈ [1, k].

Set m = m1+· · ·+mk ≥ d, so that K1×m ∼= W1⊕· · ·⊕Wk

(typically m > d). The linear representation (u′, µ′, v′)
will be constructed on this space. Viewing µ(a) as linear
endomorphisms on K1×d, we can restrict µ(a) to Wi to
obtain linear maps µ(a)|Wi : Wi →Wfa(i). Putting these linear
endomorphisms all together, we get the endomorphism µ′(a)
on K1×m. For u′ one puts u into the W1-component and
zeroes everywhere else; v′ is constructed analogously to the
µ(a) by viewing v as linear functional K1×d → K. By [ 3 ,
Lemma 3.13] this gives a K-automaton Â equivalent to A.

By construction, the matrices µ′(a) have a m1 × · · · ×mk

block structure, with the property that every row of blocks
contains at most one nonzero block. We say that (u′, µ′, v′) is
semi-monomial if, in addition, in every block of every µ′(a),
each column has at most one nonzero entry and the analogous
property holds for v′ (thinking of v′ as k blocks of size mi×1).
Clearly, whether (u′, µ′, v′) is semi-monomial is decidable.

Proof of Theorem  1 . First, we compute a minimal linear repre-
sentation (u, µ, v) of A [ 7 , p.41–42], say of dimension d. Let
Γ := {uµ(w)v : w ∈ Σ∗ } denote the set of all outputs of the
automaton. Using [  3 , Lemma 3.11] we can pick the minimal
linear representation in such a way that uµ(Σ∗) ⊆ Γ1×d.

Now compute the linear hull X = uµ(Σ∗) (Corollary  6 ).
Let W1, . . . , Wk denote the irreducible components of X , with
dim(Wi) = mi and m := m1+· · ·+mk. We now construct the
linear representation (u′, µ′, v′), of dimension m ≥ d and with
associated automaton Â, that recognizes the same series. Once
we have Â, we are able to resolve the decidability problem:

• A is equivalent to a deterministic automaton if and only
if X has dimension ≤ 1 (that is, mi = 1 for all i) [ 3 ,
Theorem 1.3]. In this case Â is deterministic [ 3 , Proof of
Proposition 3.14].

• The proof of [ 3 , Proposition 5.3] implies that A is
equivalent to an unambiguous automaton if and only if
the specific automaton Â is semi-monomial, and this can
easily be checked.

Taking K = Q, this solves Problem 1 in [ 29 ]. It remains to
establish Theorem  3 . One way to do so, is to first compute
the Zariski closure using [ 22 ], from which the linear Zariski
closure can then be obtained (see [ 28 , Theorem 1]).

However, it seems unnecessarily complex to first compute
the closure in the finer topology, both in principle as well as
in terms of computational complexity. We present an alternate
approach that stays almost entirely within the realm of linear
algebra. In particular, it avoids the need of using Gröbner bases
and of computing in extension fields. We proceed in three steps,
that successively build on each other: first we consider the
problem for a single invertible matrix (section  III ), then for
a closed set X in which the invertible matrices are dense
(essentially, the group case; section  IV ), and finally the case
for general closed sets X (the semigroup case; section  V ).

The linear algebraic approach can be expected to allow a
more practical implementation (avoiding inefficient Gröbner
bases). Unfortunately, at one point we need to leave to linear
realm in an essential way (line  22 of Algorithm  2 ; see
Remark  40 ). This appears to be the main obstacle to a more
efficient implementation.

If one wishes to avoid computations in extension fields,
while still using Gröbner bases, it would also be possible to
use our computation for the single matrix case (section  III )
as “subroutine” in [ 13 ], [ 22 ]. The output then lies between
the Zariski closure and the linear Zariski closure, and [ 28 ,
Theorem 1] can be used to find the latter.



Remark 7. The linear hull can have super-exponentially many
components in the dimension d, already in the case where
the matrices form a group. The group of signed permutation
matrices is a finite subgroup of GLd(Q) of order 2dd!. By a
result of Feit ([ 16 ]; see also the introduction of [  5 ] or [ 27 , §6]),
for large d, this order is maximal among all finite subgroups
of GLd(Q). Its linear Zariski closure consists of a union of
2d−1d! vector spaces of dimension 1 (a signed permutation and
its negative always lie in the same vector space). Even worse,
the group of signed permutation matrices is 2-generated for all
d, so that a better bound in terms of the number of generators
of the group and the dimension is also also hopeless. Since the
signed permutation matrices act faithfully on (1, 2, . . . , d), this
group also gives a linear hull of size 2d−1d! for a two-letter
alphabet and d states.

III. A SINGLE INVERTIBLE MATRIX

In this section, given A ∈ GLd(K) we compute ⟨A⟩. Basic
linear algebra, in particular generalized eigenspaces and the
Jordan normal form, are sufficient to do so. While computing
the Jordan normal form usually involves computations in a
finite extension of K (for all the eigenvalues to be present),
we get an algorithm that works over the initial field K.

We first need to understand the structure of the closure
of a semigroup in the linear Zariski topology. First note the
following behavior of the closure with respect to products.

Lemma 8. Let X ⊆Md(K) be a closed set, and let D, D′ ⊆
X be arbitrary subsets. If DD′ ⊆ X , then also DD′ ⊆ X .

Proof. Let d′ ∈ D′. Then Dd′ ⊆ X . Since multiplication by
d′ from the right is linear, hence continuous and closed, also
Dd′ = Dd′ ⊆ X . Now we know DD′ ⊆ X , and still have
to show DD′ ⊆ X . Let d ∈ D. From dD′ ⊆ X we find
dD′ = dD′ ⊆ X . Thus DD′ ⊆ X .

Lemma 9. Let S ⊆Md(K) be a subsemigroup.
1) The closure S is a semigroup.
2) If S∩GLd(K) ̸= ∅, then S∩GLd(K) is a linear algebraic

group.
3) If S ⊆Md(K) is a closed monoid (a closed semigroup

containing the identity matrix), there exists a unique
irreducible component S0 containing the identity matrix.
Then S0 is a submonoid of S.

Proof.  1) We have SS ⊆ S ⊆ S. Lemma  8 implies S S ⊆ S.
 2) Clearly S ∩ GLd(K) is a Zariski-closed subsemigroup

of GLd(K). Therefore it is a group [ 13 , Lemma 10].
 3) By [ 38 , Remark 5.2] (the proof is the same as the one

for linear algebraic groups).

Our main theorem in this section is the following.

Theorem 10. There exists a computable N = N(d,K), such
that for every A ∈ GLd(K) we have ⟨A⟩

0
= span{ANi :

i ≥ 0 }. In particular, ⟨A⟩ is computable.

By µ(Q) we denote the group of all roots of unity, where Q
denotes the algebraic closure of Q, which is also the algebraic
closure of K.

Lemma 11. Let A ∈ GLd(K). Assume that for any two
eigenvalues λ, λ′ ∈ Q of A for which λ/λ′ ∈ µ(Q), it holds
that λ = λ′. Let n ≥ 1. Then a vector space V ⊆ Kd is
A-invariant if and only if it is An-invariant.

In the following proof we make use of the identity an−bn =∏n−1
j=0 (a− ζjb), if a, b commute and ζ is an n-th root of unity.

Proof of Lemma  11 . If V is A-invariant, then it is An-
invariant. It suffices to show the converse. Without restriction
we work over Q. For every λ ∈ Q, the space V is A-invariant
if and only if it is (A − λI)-invariant. If λ1, . . . , λr are
the pairwise distinct eigenvalues of A, then every generalized
eigenspace ker(A− λiI)

d is A-invariant. If V is A-invariant,
we can consider the generalized eigenspaces of the restriction
A|V to obtain a decomposition

V =

r⊕
i=1

(ker(A− λiI)
d ∩ V ).

Let λ be an eigenvalue of A, and let ζ be a primitive n-th
root of unity (which exists because Q is algebraically closed).
Then

(An − λnI)i = (A− λI)i
n−1∏
j=1

(A− ζjλI)i

=

n−1∏
j=1

(A− ζjλI)i · (A− λI)i.

for i ≥ 0. By our assumption on the ratios of eigenvalues,
none of the ζjλ with j ∈ [1, n− 1] are eigenvalue of A. Thus,
the matrices (A − ζjλI)i are invertible for j ∈ [1, n − 1].
Consequently ker(An − λnI)i = ker(A− λI)i.

Let λ1, . . . , λr denote the pairwise distinct eigenvalues of
A. Since V is An-invariant,

V =

r⊕
i=1

(ker(An − λn
i I)

d ∩ V ) =

r⊕
i=1

(ker(A− λiI)
d ∩ V ).

It therefore suffices to show the claim when A has a single
eigenvalue λ.

Since V is An-invariant, it is also (An−λnI)-invariant. We
show that it is (A− λI) invariant, then it is also A-invariant.
It suffices to show that for every 0 ̸= v ∈ V and all i ≥ 0 we
have (A− λI)iv ∈ V .

Let 0 ̸= v ∈ V . For all i ≥ 0, let vi := (A − λI)iv
and v′i := (An − λnI)iv. Let k ≥ 0 be minimal such that
v ∈ ker((A− λI)k+1) = ker((An − λnI)k+1). Then vk is an
eigenvector of A with respect to the eigenvalue λ. Thus

0 ̸= v′k =
( n−1∑

j=0

Ajλn−1−j
)k

(A− λI)kv

=
( n−1∑

j=0

Ajλn−1−j
)k

vk = (nλn−1)kvk.

Hence v′k ∈ V implies vk ∈ V .



Suppose now that vk, . . . , vi+1 ∈ V ; we show vi ∈ V .
Again

v′i =
( n−1∑

j=0

Ajλn−1−j
)i

(A− λI)iv =
( n−1∑

j=0

Ajλn−1−j
)i

vi.

Now Avi = λvi+1, and so Ajvi ∈ span{vk, . . . , vi+1} ⊆ V
for all j ∈ [1, n− 1]. Since also v′i ∈ V , we get vi ∈ V .

Lemma 12. There exists a computable N0 = N0(d,K) such
that, for every finite field extension L/K with [L : K] ≤ d and
every root of unity ζ ∈ L, one has ζN0 = 1.

Proof. Let ζ ∈ L be a root of unity of some order n ≥ 1.
Then

[L : Q] ≥ [Q(ζ) : Q] = ϕ(n),

with ϕ(n) denoting the Euler-ϕ-function. Since

[L : Q] = [L : K][K : Q] ≤ d[K : Q],

we must have ϕ(n) ≤ d[K : Q]. Since ϕ(n)→∞ as n→∞,
but the right hand side of the inequality is constant, only finitely
many values are possible for n. By taking N0 to be the least
common multiple of these values, the claim follows.

The constant N0 = N0(d,K) in the previous lemma is
explicit and does not depend on the matrix A.

Lemma 13. Let N := N(d,K) := N0(d
2,K). Let A ∈

GLd(K), and let V ⊆ Kd be a vector subspace. If V is
An-invariant for some n ≥ 1, then V is AN -invariant.

Proof. Let λ, λ′ ∈ Q be eigenvalues of A and let N =
N0(d

2,K). Since λ, λ′ are both roots of the characteristic
polynomial, which has degree d, the extension K(λ, λ′)/K
has degree at most d2. If there exists a root of unity ζ such
that λ/λ′ = ζ, then ζ ∈ K(λ, λ′) and hence ζN = 1. Thus
AN satisfies the assumption of Lemma  11 .

Suppose now that V is An-invariant (n ≥ 1). Then V is
AnN -invariant. Lemma  11 gives that V is AN -invariant.

Let A ∈ GLd(K). We recall (Lemma  9 ), that ⟨A⟩∩GLd(K)
is a linear algebraic group, and ⟨A⟩ has a unique irreducible
component containing I . This component is denoted by ⟨A⟩

0
.

Proof of Theorem  10 . Let Z0 := ⟨A⟩
0
. Since A acts by

permutation on the finitely many irreducible components of
⟨A⟩, there exists an N > 0 such that ANZ0 = Z0. Lemma  13 

implies that we can take N = N(d,K), which is computable
without knowing Z0.

Now AN ∈ Z0 and hence ⟨AN ⟩ ∈ Z0, because Z0

is a submonoid of ⟨A⟩ (by  3) of Lemma  9 ). Since Z0

is a vector space, even span⟨AN ⟩ ⊆ Z0. Thus ⟨A⟩ ⊆⋃N−1
i=0 Ai span ⟨AN ⟩ ⊆

⋃N−1
i=0 AiZ0 ⊆ ⟨A⟩. Taking closures,

we get equality throughout, so ⟨A⟩
0
= span ⟨AN ⟩.

Finally, by the Cayley-Hamilton theorem there exist (com-
putable) λ0, . . . , λd−1 ∈ K such that (AN )d+λd−1(A

N )d−1+
· · · + λ0I = 0. Multiplying by ANm for m ≥ 0, we see in-
ductively that span ⟨AN ⟩ = span{I, AN , A2N , . . . , A(d−1)N}.
Thus ⟨A⟩

0
and ⟨A⟩ are computable.

Example 14. Let

A =


2 1 0 0 0 0
0 2 0 0 0 0
0 0 3 1 0 0
0 0 0 3 1 0
0 0 0 0 3 0
0 0 0 0 0 −2

 .

Since ϕ(n) > 62 = 36 for n > 126, we can take N =
N(6,Q) = 126. But since the only root of unity appearing
for the specific A is −1, we can actually take N = 2. Setting
B = A2 we find Z0 = span{ I,B,B2, B3, B4, B5 } to be
Z0 = span{E11 + E22 + E66, E12, E33 + E44 + E55, E34 +
E45, E35}. Finally ⟨A⟩ = Z0 ∪ −E66Z0. Up to base change
the same is true for any matrix with Jordan normal form A.

Remark 15. Instead of using the bound N(d,K) one may
compute the eigenvalues of A explicitly in a suitable number
field. It is then possible to compute the pairwise ratio of the
eigenvalues and check which ones are a root of unity. This
has the disadvantage of having to perform computations in a
field extension of K and that the resulting N depends on A.
However, the resulting N could be much smaller than N(d,K).

IV. INVERTIBLE MATRICES

In this section we consider the computation of ⟨X⟩ when
X ⊆Md(K) is a closed set, and each irreducible component of
X contains invertible matrices. In this case, ⟨X⟩ ∩GLd(K) is
a linear algebraic group (Lemma  9 ). The algorithm is that
of [ 13 ], with the Zariski topology replaced by the linear
Zariski topology. However, care must be taken in checking the
correctness of the algorithm, as the use of the linear Zariski
topology introduces some subtle difficulties. We first state the
algorithm, Algorithm  1 , and illustrate it on a short example.

Example 16. Consider

A1 =

2 0 0
0 3 0
0 0 −3

 , A2 =

1 1 0
0 1 0
0 0 1

 ,

and X = QA1 ∪ QA2. After initialization, N = {I} and
T = {I, A1, A2}. Now

⟨A1⟩
0
= span{E11, E22 + E33},

⟨A2⟩
0
= span{E11 + E22 + E33, E12}.

So N becomes span{E11, E22+E33, E12} in the first iteration
of the loop at line 7 (Lemma  19 below), and TN = N ∪A1N
where A1N = span{E11, E22 − E33, E12}, so T remains the
same. In the second iteration T and N do not change anymore
and the algorithm terminates.

In line  11 we make use of the case of a single invertible
matrix to compute ⟨A⟩

0
. Some steps need further elaboration:

A) In line  4 , we need to be able to choose Ai ∈ Zi∩GLd(K),
under the assumption that this intersection is nonempty.

B) In lines  5 ,  11 and  12 , we need to compute the closure of
the product of two (or more) irreducible closed sets.



Algorithm 1 Computation of ⟨X⟩ when the invertible matrices are
dense in X . The irreducible components Z1, . . . , Zr are given by
their bases. Throughout the algorithm, N is an irreducible closed set,
containing the identity matrix, that is monotonically increasing with
each iteration. Similarly, T is a finite subset of ⟨I, A1, . . . , An⟩ that
is monotonically increasing.

1: function GROUPCLOSURE(X)
2: Z1, . . . Zl ← Irreducible components of X

Require: GLd(K) ∩ Zi ̸= ∅ for all i ∈ [1, l]
3: for i = 1, . . . , l do
4: Ai ← An invertible element of Zi

5: N ← (A−1
1 Z1) · · · (A−1

l Zl)
6: T ← {I, A1, . . . , Al}
7: repeat
8: N ′ ← N
9: T ′ ← T

10: for A ∈ T do
11: N ← N⟨A⟩

0

12: N ← N(ANA−1)
13: for B ∈ T do
14: if AB ̸∈ TN then
15: T ← T ∪ {AB}
16: until N ′ = N and T ′ = T
17: return TN

We first explain these steps, and then show termination and
correctness of the algorithm.

A. Picking elements on which a polynomial does not vanish

The problem of picking an element in Zi ∩GLd(K) is an
instance of the more general problem of picking an element in
Zi on which a given polynomial (in this case, the determinant)
does not vanish. We give the general result, as we need it later.

Let V ⊆Md(K) be a vector subspace and let R = K[xij :
1 ≤ i, j ≤ d] be a polynomial ring in d2 indeterminates. Let
A0 ∈ Md(R) be the matrix whose ij-th entry is xij . The
space V is defined by a finite number of homogeneous linear
equations in the variables xij . We can transform this system
of equations into a triangular form by Gaussian elimination,
and substitute into the entries of A0 to eliminate a number of
variables. This leaves us with a matrix A ∈Md(R) with the
following property: Substituting any elements αij ∈ K for xij

yields a matrix in V , and conversely, every element of V can
be obtained in this way. We call A a generic matrix of V .  
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Lemma 17. Let V1, . . . , Vn ⊆Md(K) be irreducible closed
subsets. If X ⊆Md(K) is a Zariski-closed subset, then it is
possible to decide whether V1 · · ·Vn ⊆ X , and if this is not
the case, to compute an element of V1 · · ·Vn \X .

Proof. Let X be defined by nonzero polynomials f1, . . . , fm ∈
K[xij : 1 ≤ i, j ≤ d]. We may assume m ≥ 1 as the claim
is trivial otherwise. Represent each Vk by a generic matrix

4A more conceptual way to think about this is that the coordinate ring of V
is again a polynomial ring, and A represents the homomorphism of coordinate
rings K[Md(K)] → K[V ].

Ak ∈ Md(K(y(k))), where y(k) = (y
(k)
ij ) is a family of d2

indeterminates. Then

V1 · · ·Vn = {A1(α
(1)
ij ) · · ·An(α

(n)
ij ) : α

(k)
ij ∈ K,

i, j ∈ [1, d], k ∈ [1, n] }.

Substituting, each of the polynomials fl(xij) gives rise to a
polynomial gl(y

(1)
ij , . . . y

(n)
ij ) := fl

(
A1(y

(1)
ij ) · · ·An(y

(n)
ij )

)
in

at most nd2 indeterminates. Now V1 · · ·Vn ⊆ X if and only if
all of g1, . . . , gm vanish on Knd2

. A polynomial gl (l ∈ [1,m])
vanishes on all of Knd2

if and only if it is the zero polynomial, 
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and one checks this by simplifying the expression for gl.

Suppose now that some gl is nonzero. Let
∏

i,j,k (y
(k)
ij )

t
(k)
ij

with t
(k)
ij ≥ 0 be a monomial of maximal total degree in the

support of gl. Let P (k)
ij ⊆ K be a set of cardinality t

(k)
ij + 1.

By Alon’s Combinatorial Nullstellensatz [ 2 , Theorem 1.2], the
finite set

{ gl(α(1)
ij , . . . , α

(n)
ij ) = fl

(
A1(α

(1)
ij ) · · ·An(α

(n)
ij )

)
:

(α
(k)
ij ) ∈Md(K) with α

(k)
ij ∈ P

(k)
ij }

contains a nonzero element. Every such element gives rise to
an element of V1 · · ·Vk \X .

Example 18. Let V1 = span{E11 + E12, E21 + E22} and
V2 = span{E11 + E21, E12 + E22}, with generic matrices

A1 =

(
x x
y y

)
, A2 =

(
z w
z w

)
.

Set f1 = x11x22 − x12x21 and f2 = (x11 − x21)(x11 − x12).
Evaluating f1 and f2 on the product of the generic matrices,

A1A2 =

(
2xz 2xw
2yz 2yw

)
,

we get g1 = 4xzyw− 4xwyz = 0 and g2 = 4(xz− yz)(xz−
xw). So g1 vanishes on V1V2, but g2 has a leading term 4yzxw.
The Combinatorial Nullstellensatz implies that there is an
element in V1V2 with w, x, y, z ∈ {0, 1} on which g2 does
not vanish (e.g., x = z = 1, y = w = 0).

The special case of a single polynomial f follows by setting
m = 1 and taking X to be the vanishing set of f .

B. Computing the closure of a product

For vector subspaces V , W ⊆ Md(K) we distinguish the
pairwise product VW := { vw : v ∈ V, w ∈ W } which in
general is not a vector space, and the product of vector spaces

V ·W := spanVW = span{ vw : v ∈ V, w ∈W },

which is the span of the former. We are interested mostly in
closed sets, and the next lemma simplifies this issue.

Lemma 19. Let V , W ⊆Md(K) be irreducible closed subsets.
Then VW = V ·W . In particular, the set VW is irreducible.

5We use that K is infinite.



Proof. The sets V , W ⊆ Md(K) are also closed and irre-
ducible in the Zariski topology. 

6
 In the Zariski topology the mul-

tiplication map µ : Md(K) ×Md(K) → Md(K), (A,B) 7→
AB is continuous, and hence µ(V,W ) = VW is irreducible
[ 41 ,  Lemma 0379 ]. Then VW is also irreducible in the, coarser,
linear Zariski topology. Thus the same is true for the closure
VW [ 41 ,  Lemma 004W ]. So VW is a vector space. But
V ·W is the smallest vector space containing VW , and thus
VW = V ·W .

Now it is easy to compute a generating set for VW as the
pairwise products of bases of V and W .

Remark 20. The multiplication map µ is not continuous in the
linear Zariski topology. It is also possible to prove the previous
lemma directly, without resorting to the Zariski topology, by
showing VW = V ·W by hand.

C. Termination and Correctness of Algorithm  1 

Recall that a group G is a torsion group if every element
has finite order. We need the following.

Theorem 21 (Burnside–Schur [ 21 , Theorem 2.3.5]). If G ≤
GLd(K) is a finitely generated torsion group, then G is finite.

Theorem 22. Let X ⊆Md(K) be a closed subset (given by
a list of bases) such that GLd(K) ∩X is dense in X . Then
⟨X⟩ is computable.

Proof. We show that Algorithm  1 terminates and yields ⟨X⟩.
The intersection GLd(K)∩ ⟨X⟩ is a linear algebraic group by

 2) of Lemma  9 , and we are going to use this structure. To
do so, write X̃ for the closure of a set in the usual Zariski
topology (i.e., not the linear one), taken over the algebraic
closure Q.

Denote by (T1, N1), (T2, N2), . . . , the subsequent values
taken by T and N . Then N1 ⊆ N2 ⊆ · · · is an ascending chain
of vector subspaces of the finite-dimensional space Md(K),
and T1 ⊆ T2 ⊆ · · · is an ascending chain of finite subsets of
⟨I, A1, · · · , Al⟩. Define N∞ :=

⋃
i≥1 Ni and T∞ :=

⋃
i≥1 Ti.

Set S =
⋃

i≥1 TiN∞ = T∞N∞. 
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 By construction X is dense

in S (this is true in the beginning of the algorithm and is
preserved in each step, keeping in mind Lemma  8 ).

It remains to show that the algorithm terminates and
that S is a closed semigroup. Since each Ni is a vector
subspace of Md(K), the chain of Ni’s stabilizes at some
N∞ = Nm. For i ≥ 0 and A ∈ Ti note ANiA

−1 ⊆ Ni+1

(by line  12 ) and so AN∞A−1 ⊆ N∞. These being vector
spaces of the same dimension, even AN∞A−1 = N∞. Let
H := N∞∩GLd(K). For every i ≥ 0 and A, B ∈ Ti we have

6To see irreducibility, consider polynomials f , g ∈ K[xij ] that vanish on
proper subsets of V , and such that fg vanishes on all of V . Using the linear
homogeneous equations defining V , we can eliminate a number of variables
in f and g to obtain nonzero polynomials f̂ , ĝ, in a subset of the variables
{xij}, with the property that f̂ ĝ vanishes everywhere. However, since K is
infinite, this implies f̂ ĝ = 0, a contradiction to f̂ , ĝ ̸= 0.

7The idea will be that N∞ ∩ GLd(K) is the irreducible component
containing the identity, and T∞ is in fact a finite set that contains a transversal
of the group ⟨X⟩ ∩GLd(K) with respect to N∞ ∩GLd(K).

(AH)(BH) ⊆ ABHH ⊆ Ti+1H by construction (the first
inclusion by BN∞ = N∞B; the second one by lines  12 and

 15 ). Therefore G :=
⋃

i≥1 TiH ⊆ GLd(K) is a semigroup.
The Zariski closure G̃ ⊆ GLd(Q) is a linear algebraic group,
and H̃ is a closed normal subgroup. Indeed, as N∞ is a
vector subspace of Md(K), the closure H̃ is simply the vector
subspace of Md(Q) defined by the same equations as N∞,
intersected with GLd(Q). The quotient G̃/H̃ is also a linear
algebraic group [ 8 , Theorem II.6.8], so without restriction
G̃/H̃ ⊆ GLd′ for some d′ ≥ 1. Let π : G̃→ G̃/H̃ denote the
quotient morphism; it is a K-morphism of algebraic K-groups.

By construction of the sets Ti and H , the set π(G) is
contained in the subsemigroup of GLd′(K) generated by π(I),
π(A1), . . . , π(Al). But it also contains all these elements, so
π(G) = ⟨π(I), π(A1), . . . , π(Al)⟩. By line  11 , every element
of π(G) has finite order. Therefore π(G) is a torsion group.
As we have just argued it is also finitely generated, and thus
Burnside–Schur applies to show that π(G) is finite.

We now check that finiteness of π(G) = G̃/H̃ implies
finiteness of T∞. Note that H̃ ∩ GLd(K) = H . Thus for A,
B ∈ GLd(K) we have AB−1 ∈ H̃ if and only if AB−1 ∈ H
if and only if AB−1 ∈ N∞. Looking at lines  14 – 15 , once the
chain N1 ⊆ N2 ⊆ · · · has stabilized at N∞, the chain T1 ⊆
T2 ⊆ . . . must also stabilize, say at the finite set T∞ = Tn,
because we are at this point only adding elements representing
different cosets of G̃ modulo H̃ . Then S = TnNm is closed.

Finally, S is a semigroup: if A, B ∈ T∞ then
(AN∞)(BN∞) = ABN∞N∞ ⊆ ABN∞ ⊆ T∞N∞, where
the last inclusion is ensured by line  15 .

V. NON-INVERTIBLE MATRICES

Throughout this entire section, let X ⊆Md(K) be a closed
subset (in the linear Zariski topology) and let S := ⟨X⟩ be the
subsemigroup of Md(K) generated by X . In this section we
show how to compute the closure S.

Since S is closed in the linear Zariski topology, it is also
closed in the Zariski topology. The set S is therefore a linear
semigroup (Lemma  9 ) and in particular strongly π-regular
(every element has a power that is contained in a subgroup of
S). Much is known about the structure of linear semigroups
[ 38 ], [ 39 ], respectively strongly π-regular matrix semigroups
[ 39 , Section 2.3.2] [ 34 ]. These structural results are reflected
in the algorithmic considerations, although they are not directly
applicable to S itself. More general structural results about
matrix semigroups, applying also to S, can be found in [ 35 ],
[ 36 ]. However, we will not be making use of them.

Our approach leans heavily on an algorithm for the com-
putation of the Zariski closure, described in [ 22 ]. However,
we use more semigroup-theoretic language. A key point in
[ 22 ] is the use of an inductive approach based on the rank:
first the closure of the semigroup generated by elements of the
maximal rank r is computed, then the closure of all elements
of rank ≥ r − 1, and so on.

Definition 23. For ∅ ≠ X ⊆Md(K) closed, the generic rank
of X is r(X) := max{ rank(A) : A ∈ X }.

https://stacks.math.columbia.edu/tag/0379
https://stacks.math.columbia.edu/tag/004W


A disadvantage arising from the coarseness of the linear
Zariski topology compared to the Zariski topology is that the
generic rank is ill-behaved with respect to products.

Example 24. Consider again Example  18 . Then V1 and V2 are
2-dimensional vector spaces of generic rank 1. However, V1V2

contains all matrices Eij . Thus V1V2 = M2(K) has generic
rank 2. (In the usual Zariski topology, V1V2 is not dense in
M2(K): the determinant vanishes on the entire set.)

Example  24 shows that taking a closure of a product of
vector spaces may introduce elements of larger rank. Much
of the difficulty in the linear Zariski topology setting revolves
around ensuring termination in light of this ill-behaved nature
of the generic rank (Remark  40 ).

We call a matrix A ∈Md(K) completely pseudo-regular if
it is contained in a subgroup of Md(K). 
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 The main issue in

computing S , is that completely pseudo-regular elements A of
S give rise to subgroups of S , i.e., subsemigroups of Md(K)
that are groups with regards to some idempotent matrix as
identity. We write E(A) for this idempotent. We will need to
deal with these subgroups by reducing to the (already proven)
group case.

For a subset Y ⊆Md(K) and n ≥ 1, we define

Y ≤n :=

n⋃
k=1

Y k = {A1 · · ·Ak : k ∈ [1, n], A1, . . . , Ak ∈ Y }

and Y ⊴n := {I} ∪ Y ≤n. For a completely pseudo-regular
element A ∈ S of rank r and a closed set Y , let E = E(A),

T0(Y,A) :=
{
B ∈ EY ⊴2(dr)+5E : rank(B) = r

}
, and

T (Y,A) := Y ⊴(dr)+2 ⟨T0(Y,A)⟩ Y ⊴(dr)+2.

We now have all the tools to state Algorithm  2 .
The main idea in the algorithm is: each set Rs is a (finite)

set of completely pseudo-regular elements of rank s. Under the
assumption that each Rs is actually a full set of representatives
of completely pseudo-regular elements of rank s, we attempt
to compute S using a recursive strategy (TRYCLOSE). If this
fails to yield the entire closure, then in fact some completely
pseudo-regular element must be missing and we can find such
an element (using FINDCPR), add it to Rs, and try again. We
give an example illustrating the algorithm; afterwards we deal
with the computation of T (Y,A) (line  15 ) and termination and
correctness of Algorithm  2 .

Example 25. Let

A =

2 0 0
0 −2 0
0 0 3

 , B =

0 0 0
0 0 1
1 1 0

 , C =

0 0 0
0 0 0
0 0 5

 ,

and X = AQ∪BQ∪CQ. On the first iteration, in TRYCLOSE,
all Rs = Ts = ∅ and Y4 = X , Y3 = X≤5 consists of all scalar

8In semigroup theory, an element of S is completely regular if it is contained
in a subgroup of S. Completely regular elements of S are completely pseudo-
regular, but the converse may fail if S is not strongly π-regular: e.g., an inverse
to a given matrix A ∈ S may exist in Md(K) but not be contained in S.

Algorithm 2 Computation of ⟨X⟩ in the general case. FINDCPR
discovers a new completely pseudo-regular element of rank > s.
TRYCLOSE returns a closed set, that is equal to ⟨X⟩ if all necessary
completely pseudo-regular elements have been discovered.

1: function SEMIGROUPCLOSURE(X)
Require: X closed set

2: r ← r(X), R1, . . . , Rr ← ∅
3: Yi, Ti (i ∈ [1, r]) ← TRYCLOSE(X,R1, . . . , Rr)
4: while Y 2

1 ̸⊆ Y1 do
5: s← 0
6: repeat
7: B ← FINDCPR(X,Yi, Ti, Ri, s)
8: s← rank(B),
9: Rs ← Rs ∪ {B}; R1, . . . , Rs−1 ← ∅

10: until |Rs| ≤
(
d
s

)
11: Yi, Ti (i ∈ [1, r]) ← TRYCLOSE(X,R1, . . . , Rr)

return Y1

12: function TRYCLOSE(X , R1, . . . , Rr)
Require: X closed set; Rs ⊆ ⟨X⟩ finite set of completely

pseudo-regular elements of rank s
13: r ← r(X), Yr+1 ← X
14: for s = r, . . . , 1 do
15: Ts ←

⋃
B∈Rs

T (Ys+1, B)

16: Ys ← (Ys+1 ∪ Ts)
≤2(ds)+3

return Y1, T1, . . . , Yr, Tr

17: function FINDCPR(X , Y1, T1, R1, . . . , Yr, Tr, Rr, s)
18: r ← r(X)
19: for n ≥ 0 do
20: for s′ = r, . . . , s+ 1 do
21: Cs′ ← Ys′ ∪ {A ∈Md(K) : rank(A) < s′ }
22: if n ≥ 2

(
d
s′

)
+ 4 and Xn \ Cs′ ̸= ∅ then

23: A1 · · ·An ← an element of Xn \ Cs′

24: Ak · · ·Al ← c.p.r. subprod. ̸∈ Ys′+1 ∪ Ts′

25: return Ak · · ·Al

multiples of nonempty products of at most 5 of the matrices,
Y2 = (X≤5)≤9 = X≤45, and Y1 = X≤405. Now Y 2

1 ̸⊆ Y1

(e.g., A406 is not contained in Y1). So the check on line  4 fails.
Now FINDCPR gets called (with s = 0). It discovers A6 ∈

X6 \Y3, which, being invertible, is actually completely pseudo-
regular with E(A) = I . However, to make the example more
illustrative, we deviate here from the actual pseudo-code and
presume that FINDCPR would instead return the completely
pseudo-regular element C. 
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 Then E(C) = E33 and R1 = {C}.

One gets T1 = T (Y2, C) = span{E33} ∪ span{E23} ∪
span{E31 +E32} ∪ span{E31 −E32} ∪ span{E21 +E22} ∪
span{E21−E22} (note T 2

1 , XT1, T1X ⊆ T1). So, the second
iteration of the loop at line  4 yields Y4 = X , Y3 = X≤5, Y2 =
X≤45, and Y1 = (X≤45∪T1)

≤9 = X≤405∪T1. However, again
Y 2
1 ̸⊆ Y1 and FINDCPR gets called again. Let us assume that at

this point FINDCPR returns (correctly) A6 (with E(A6) = I).

9Otherwise, the next call to TRYCLOSE already returns the entire closure,
as we will see below.



Then R3 = {A6}, while now R2 = R1 = ∅ are reset.
On the next call to TRYCLOSE, we get T3 = T (A, I) =

span{E11+E22, E33}∪span{E11−E22, E33}. Then Y4 = X .
Multiplying T3 from the left by B, B2, C, CB, CB2, one
can find

Y3 = span{E11 + E22, E33} ∪ span{E11 − E22, E33}
∪ span{E21 + E22, E33} ∪ span{E21 − E22, E33}
∪ span{E31 + E32, E23} ∪ span{E31 − E32, E23}
∪ span{E33} ∪ span{E23}
∪ span{E31 + E32} ∪ span{E31 − E32}
∪ span{E21 + E22} ∪ span{E21 − E22}.

Now one can check Y 2
3 ⊆ Y3, so Y1 = Y2 = Y3, and this is

the closure of ⟨X⟩.
Finally, if we multiply this set with (1, 1, 1) = e1 + e2 + e3

from the left (i.e., summing the rows), we get

(1, 1, 1)Y3 = span{e1 + e2, e3} ∪ span{e1 − e2, e3}.

This is the linear hull of the automaton in [ 3 , Example 3.7].

Before we can discuss correctness and termination of the
algorithm, we show that the generic rank is computable
(Corollary  27 ), that T (Y,A) is computable (Lemma  35 ), and
that we need to consider only finitely many completely pseudo-
regular elements (Lemma  38 ), up to a certain equivalence
(Definition  31 ).

A. Computability of the generic rank

To compute the generic rank, we relate it to generic matrices
(section  IV-A ).

Lemma 26. Let r ∈ Z≥0. For an irreducible closed subset
V ⊆Md(K), the following statements are equivalent.

a) r(V ) = r.
b) Every generic matrix of V has rank r.
c) There exists a generic matrix of V with rank r.
d) There exists a Zariski-dense Zariski-open subset U ⊆ V

with rank(A) = r for all A ∈ U .

Proof. The implications  b) ⇒  c) and  d) ⇒  a) are immediate
from the definitions.

 c) ⇒  d) Let R = K[xij : 1 ≤ i, j ≤ d] and let A ∈Md(R)
be a generic matrix of V . Performing Gaussian elimination over
the field of fractions q(R) = K(xij : 1 ≤ i, j ≤ d) of R, we
find an invertible matrix T ∈Md(q(R)) such that B = TA is
in reduced row echelon form. Let f ∈ R be a nonzero common
multiple of the denominators of the entries of T , T−1, and
B. Whenever A(αij) ∈ V with f(A(αij)) ̸= 0, we get that
A(αij) = T−1(αij)B(αij) ∈ V is well-defined and has rank
r (as B(αij) is still in reduced row echelon form and T (αij) is
invertible). The set D(f) = {A(αij) ∈ V : f(A(αij)) ̸= 0 }
is nonempty and Zariski-open in V . By Zariski-irreducibility
of V it is Zariski-dense in V .

 a) ⇒  b) Let A be a generic matrix of V with rank(A) = s.
In light of  c) ⇒  d) we see that V contains a Zariski-dense
subset U of rank s matrices. Thus r(V ) ≥ s. On the other

hand, all (s+ 1)× (s+ 1) minors vanish on U . Since these
minors are polynomials in the entries of the matrices, also all
elements of the Zariski closure of U have rank ≤ s. Altogether
r(V ) = s.

The generic rank r = r(V ) can therefore be computed using
Gauss elimination on a generic matrix of V .

Corollary 27. Let V ⊆Md(K) be an irreducible closed subset.
Then r = r(V ) is computable.

B. A key finiteness result

The following will be applied in various guises. (This
observation has also been used in [ 22 ]. Similar considerations
are used to derive the bounds in [ 34 ].)

Lemma 28. Let W be a d-dimensional vector space. Let
r ∈ [0, d] and let (U1, V1), . . . , (Un, Vn) be pairs of vector
subspaces of W such that Ui ∩ Vi = 0 and dimVi = r for
i ∈ [1, n]. If n >

(
d
r

)
, then

1) there exist i > j such that Ui ∩ Vj = 0, and
2) there exist i < j such that Ui ∩ Vj = 0.

Proof. Replacing the Ui by larger spaces if necessary we may
suppose dimUi = d− r for i ∈ [1, n]. Therefore it suffices to
show the first claim, the second one follows by symmetry.

Fixing bases ui,1, . . . , ui,d−r of Ui and vi,1, . . . , vi,r of
Vi we can associate to Ui and Vi the elements αi := ui,1 ∧
· · ·∧ui,d−r ∈

∧d−r
W and βi := vi,1∧· · ·∧vi,r ∈

∧r
W . (A

different choice of bases only changes the corresponding αi,
respectively, βi by a nonzero scalar multiple.) Now Ui∩Vj = 0
if and only if αi ∧ βj ̸= 0 in the exterior algebra

∧
W .

Assume, for the sake of contradiction, Ui ∩ Vj ̸= 0 for all
i, j ∈ [1, n] with i > j. Then αi ∧ βj = 0 for i > j but
αi ∧ βi ̸= 0. Thus βi cannot be a linear combination of β1,
. . . , βi−1. Hence the β1, . . . , βn are linearly independent in∧r

W , and therefore n ≤ dim
∧r

W =
(
d
r

)
contradicts the

assumption on n.

C. Equivalence classes of completely pseudo-regular elements.

We need an intrinsic characterization of completely pseudo-
regular elements.

Lemma 29. Let A ∈ Md(K). The following statements are
equivalent.

a) A is completely pseudo-regular.
b) There exists A′ ∈ Md(K) such that A = AA′A and

AA′ = A′A.
c) There exist E, A′ ∈ Md(K) such that E2 = E, EA =

AE = A, and AA′ = A′A = E.
d) rankA = rankA2.
e) im(A) ∩ ker(A) = 0.

Proof. The equivalence of  a) ,  b) , and  c) holds in all semigroups.
For convenience, we recall a proof.

 a) ⇒  b) Let G ⊆Md(K) be a subgroup containing A, and
A′ the inverse of A in G.

 b) ⇒  c) E := A′A is idempotent as claimed.
 c) ⇒  a) The semigroup generated by A, A′, and E is a group.



 b) ⇒  d) Since A = A2A′, we have im(A) ⊆ im(A2), and
hence im(A) = im(A2).

 d) ⇔  e) Clear.
 e) ⇒  c) We have Kd = im(A) ⊕ ker(A), and therefore it

is possible to construct a suitable inverse to A on im(A) and
extend it to Kd.

Suppose that A is completely pseudo-regular and E is an
idempotent as in  c) . Then rankA = rankE. From this rank
equality and EA = A and AE = E, one deduces imE = imA
and kerE = kerA, so that E is uniquely determined by A (an
idempotent matrix E is a projection onto the subspace imE
along kerE, and it is therefore uniquely determined by its
image and its kernel). Then E = E(A) is the identity element
of any subgroup containing A.

The element A′ with AA′ = A′A = E is not uniquely de-
termined, but there is a unique such A′ with A′ ∈ EMd(K)E
(because A′|imE is determined by A and A′|kerE = 0). We
write A+ for this element of EMd(K)E and call it the pseudo-
inverse of A.

Lemma 30. If S ⊆Md(K) is a Zariski-closed subsemigroup,
then S is strongly π-regular. For every completely pseudo-
regular A ∈ S, also E(A), A+ ∈ S.

Proof. A Zariski-closed semigroup S is strongly π-regular by
[ 38 , Theorem 3.18] and the remaining claims follow from
inspection of the proof of the cited theorem.

There may be infinitely many completely pseudo-regular
elements (and associated subgroups), and we need to reduce
the problem to one where we only have to deal with finitely
many. To do so, we deal with equivalence classes of completely
pseudo-regular elements.

Definition 31. 1) For A, B ∈ Md(K) write A ∥ B if
im(A) = im(B) and ker(A) = ker(B).

2) For A, B ∈ S let A ∼S B if there exist C, D, C ′, D′ ∈
S ∪ {I} such that B ∥ DAC and A ∥ D′BC ′.

The relation ∼S is an equivalence relation on S . The rank is
constant on each ∼S -equivalence class, and we may therefore
speak of the rank of an equivalence class. We write [A]S for
the ∼S -equivalence class of A ∈ S.

The rest of the subsection is dedicated to ultimately proving
that, given a completely pseudo-regular element A ∈ S of
rank r, and under the assumption that we are able to compute
a closed set Y containing all elements of S of rank > r, it
is possible to compute a closed set that contains the entire
equivalence class [A]S (this is  2) of Lemma  35 ). This will
allow us to compute T (Y,A).

The following lemma replaces [ 22 , Propositions 9 and 10]
in our setting.

Lemma 32. Let A = A1 · · ·An with A1, . . . , An ∈
Md(K). Suppose there exists r ≥ 0 such that rank(A) =
rank(AiAi+1) = r for all i ∈ [1, n− 1].

1) There exists a subproduct A′ := Ai1 · · ·Aik with 1 =
i1 < i2 < · · · < ik−1 < ik = n such that A ∥ A′ and
k ≤

(
d
r

)
+ 3.

2) If n ≥ 2
(
d
r

)
+ 4, then there are 1 ≤ k < l ≤ n such that

Ak · · ·Al is completely pseudo-regular of rank r.

Proof.  1) For i ∈ [3, n − 1] define Vi := im(Ai · · ·An) and
Ui := ker(A1 · · ·Ai−1). Then Vi∩Ui = 0 for all i ∈ [3, n−1].
Suppose n >

(
d
r

)
+3. By Lemma  28 , there exist i, j ∈ [3, n−1]

with j < i such that Uj ∩ Vi = 0. Then

A1 · · ·Aj−1(Aj · · ·Ai−1)Ai · · ·An ∥ A1 · · ·Aj−1Ai · · ·An,

and the second product has fewer factors. The claim follows
by repeating this process.

 2) For i ∈ [1, ⌊n/2⌋−1], let Ui = ker(A2i−1A2i) and Vi =
im(A2i+1A2i+2). Then Ui ∩ Vi = 0 for all i. By Lemma  28 ,
there are i < j with Uj ∩ Vi = 0. Then im(A2i+1A2i+2) ∩
ker(A2j−1A2j) = 0 and 2i+1 < 2j, so k = 2i+1 and l = 2j
works.

Lemma 33. Let A ∈ S be completely pseudo-regular and
B ∈ [A]S .

1) There exist completely pseudo-regular C, D ∈ [A]S such
that B = E(D)B and B = BE(C).

2) Suppose B = B1B2 with B1, B2 ∈ S. Then there exists
a completely pseudo-regular element C ∈ [A]S such that
B1B2 = B1E(C)B2.

Proof. Let P , P ′, Q, Q′ ∈ S ∪ {I} such that A ∥ Q′BP ′ and
B ∥ QAP . Let r = rank(A).

 1) Since rank(B) = r as well, we have im(QA) = im(B)
and im(Q′B) = im(Q′QA) = im(A). Then rank(Q′QA) = r
implies ker(Q′QA) = ker(A), so that Q′QA ∥ A. In particular,
Q′QA is completely pseudo-regular. Now let D := QAQ′.
Since rank(Q′QAQ′QA) = r, we must have rank(D) = r.
Then im(D) = im(QA) = im(B). Since rank(AQ′QA) =
r we must have im(QA) ∩ ker(AQ′) = 0, and thus D is
completely pseudo-regular. Hence E(D)B = B. Finally, D ∥
QAQ′ by definition and A ∥ Q′QAQ′QA = Q′DQA, so that
A ∼S D.

The symmetric claim follows analogously.
 2) By  1) there exist completely pseudo-regular elements

D, D′ ∈ [A]S such that B = E(D)B and B = BE(D′). Let
C := (B2D

′P ′)A(Q′DB1). From im(DB1) ⊇ im(DB) =
im(B) and rank(DB1) ≤ rank(B) we get im(DB1) =
im(B). Analogously ker(B2D

′) = ker(BD′) = ker(B). Also
im(Q′DB1) = im(Q′B) = im(A) and ker(B2D

′P ′) =
ker(BP ′) = ker(A). Thus rank(C) = r. Computing C2 =
(B2D

′P ′)A(Q′DBD′P ′)A(Q′DB1), we see that C is com-
pletely pseudo-regular. From A ∥ (Q′DB1)C(B2D

′P ′)A we
get C ∼S A.

From ker(DB1) = ker(C) we have DB1 = DB1E(C),
and from im(B2D

′) = im(C) we have E(C)B2D
′ = B2D

′.
Thus DB1E(C)B2 = DB and B1E(C)B2D

′ = BD′. We
deduce B1E(C)B2|im(D′) = B|im(D′). Next ker(E(C)B2) ⊆
ker(DB) = ker(B) implies ker(B1E(C)B2) = ker(B) =
ker(D′). So Kd=im(D′)⊕ker(D′), so B1E(C)B2 = B.



Proposition 34. Let E ∈Md(K) be idempotent of rank r and
let H ⊆ ESE be a closed subset. Then {A ∈ H : rank(A) =
r } is contained in a subgroup of S (with neutral element E),
and it is possible to compute ⟨{A ∈ H : rank(A) = r }⟩.

Proof. Let V = imE. By a suitable change of basis, the
endomorphisms of V correspond to matrices with arbitrary
entries in the upper left r×r-block and zeroes everywhere else.
The matrices A ∈ H with rankA = r correspond to those
matrices where the upper left r × r-block is invertible, and all
entries outside this block are zero. We may therefore compute
⟨{A ∈ H : rank(A) = r }⟩ by reducing to the invertible case
(see section  IV ).

In the following lemma keep in mind that if A ∈ S is
completely pseudo-regular, then the associated idempotent E =
E(A) may not be contained in S but is always contained in
S by Lemma  30 .

The, somewhat technical, statement  1) “connects” the
idempotent F = F (B) of any completely pseudo-regular to E
in way that is needed for proving  2) . Statement  1) will not be
needed later on.

Lemma 35. Let r ≥ 0 and let A be a completely pseudo-
regular element of S of rank r. Suppose Y ⊆ Md(K) is a
closed set with X ∪ {B ∈ S : rank(B) > r } ⊆ Y . Let
E := E(A) and H := {B ∈ EY ⊴2(dr)+5E : rank(B) = r }.

1) If F = E(B) for some completely pseudo-regular
B ∈ [A]S , then there exist D ∈ Y ⊴(dr)+2E and D+ ∈
E⟨H⟩Y ⊴(dr)+2 such that D+D = E and DD+ = F .

2) The set ⟨H⟩ is computable and Y ⊴(dr)+2⟨H⟩Y ⊴(dr)+2

contains [A]S .

Proof.  1) Recall A = EA = AE and rankA = rankB =
rankE = r. Let P , Q ∈ S ∪ {I} be such that B ∥ QAP .
Then im(B) = im(QAP ) = im(QA) = im(QEA), with
the middle equality holding because of rank(QA) ≤ r.
Also because of the ranks, therefore im(B) = im(QE) and
rank(QE) = r. Analogously one finds ker(B) = ker(EP )
and rank(EP ) = r. Now (EP )F = EP and F (QE) = QE.
Write P = P1 · · ·Pm and Q = Q1 · · ·Qn with m, n ≥ 0
and Pi, Qi ∈ X ∪ {B ∈ S : rank(B) > r }. Choosing m,
n minimal, we get rank(PiPi+1) = r for i ∈ [1,m− 1] and
rank(QiQi+1) = r for i ∈ [1, n−1]. Consider EP1 · · ·Pm and
Q1 · · ·QnE. Applying  1) of Lemma  32 , we find subproducts
D = Qi1 · · ·QikE and C = EPj1 · · ·Pjl with k, l ≤

(
d
r

)
+ 2

and such that im(D) = im(F ) and ker(C) = ker(F ).
Now set R := CD. Then R ∈ H . Therefore ⟨H⟩ contains

the pseudo-inverse R+ = ER+ = R+E satisfying RR+ =
R+R = E by Lemma  30 . Define D+ := R+C = R+EC.
Then D+D = R+CD = R+R = E. Furthermore DD+ is
idempotent with im(DD+) = imF and ker(DD+) = kerF .
Thus DD+ = F .

 2) One first computes H and then, using Proposition  34 ,
one can compute ⟨H⟩ = ⟨{C ∈ H : rank(C) = r}⟩ as a
subset of EMd(K)E. Note E⟨H⟩Y ⊴(dr)+2XY ⊴(dr)+2E ⊆

E⟨H⟩Y ⊴(dr)+5E = E⟨H⟩EY ⊴(dr)+5E. Every element of this
set having rank r is also contained in E⟨H⟩HE ⊆ ⟨H⟩.

Let B = B1 · · ·Bn ∈ [A]S with B1, . . . , Bn ∈ X . By
Lemma  33 , there exist completely pseudo-regular elements C0,
. . . , Cn ∈ [A]S such that B = E0B1E1B2 · · ·En−1BnEn

with idempotents Ei = E(Ci). For each Ei, let Ai ∈
Y ⊴(dr)+2E and A+

i ∈ E⟨H⟩Y ⊴(dr)+2 be such that A+
i Ai = E

and AiA
+
i = Ei (these exist by  1) ). Then

B = A0(A
+
0 B1A1)(A

+
1 B2A2) · · · (A+

n−1BnAn)A
+
n .

Each A+
i BiAi−1 is contained in ⟨H⟩ and A+

n ∈
E⟨H⟩Y ⊴(dr)+2 ⊆ ⟨H⟩Y ⊴(dr)+2, so that we obtain B ∈
Y ⊴(dr)+2⟨H⟩Y ⊴(dr)+2.

D. Termination and correctness of Algorithm  2 

The following lemma forms the basis of the recursive strategy
in Algorithm  2 . It reduces the problem of computing S to
the computation of a suitable set of representatives of the
completely pseudo-regular elements.

Lemma 36. Let Y ⊆Md(K) be closed, r ≥ 0, and suppose
Y contains X ∪ {A ∈ S : rank(A) > r }.

1) If B is completely pseudo-regular of rank r, then [B]S ⊆
T (Y,B).

2) If T ⊆Md(K) is closed such that Y ∪ T contains every
completely pseudo-regular B ∈ S with rank(B) ≥ r,
then

{B ∈ S : rank(B) ≥ r } ⊆
(
Y ∪ T

)≤2(dr)+3
.

The claim  1) follows immediately from  2) of Lemma  35 .
If some element of rank > r is missing from Y , perhaps
[B]S ̸⊆ T (Y,B), but T (Y,B) is still computable. We prove

 2) of Lemma  36 after Lemma  37 .
Several things remain to check; in particular that TRYCLOSE

will indeed succeed to compute the closure under certain
assumptions on the sets Rs, that FINDCPR will discover new
completely pseudo-regular elements, and finally, that loops that
increase the size of Rs eventually terminate.

We need two final preparatory lemmas. The first one allows
us to find completely pseudo-regular elements. This will be
the key ingredient to make FINDCPR work.

Lemma 37. Let r ≥ 0 and let Y , T ⊆Md(K) be closed such
that X ∪ {B ∈ S : rank(B) > r } ⊆ Y , and set

Y ′ :=
(
Y ∪ T

)≤2(dr)+3
.

If there exists A = A1 · · ·An ∈ S \ Y ′ with A1, . . . , An ∈
X and rank(A) ≥ r, then there exist k < l such that the
subproduct A′ = Ak · · ·Al is completely pseudo-regular of
rank r and not contained in Y ∪ T .

Proof. Successively grouping together subproducts contained
in Y ∪T , we find a representation A1 · · ·An = C1 · · ·Ct with
Ci ∈ ⟨A1, . . . , An⟩ ∩ (Y ∪ T ) and t minimal. By minimality
of t, necessarily Ck · · ·Cl ̸∈ Y ∪ T for k < l. In particular,
rank(Ck · · ·Cl) = r. Since A ̸∈ Y ′, necessarily t ≥ 2

(
d
r

)
+ 4.



Now  2) of Lemma  32 implies that there exist k < l such
that A′ := Ck · · ·Cl is completely pseudo-regular.

Proof of Lemma  36 ,  2) . Suppose the claim is false. Then there
exists some A ∈ S \ Y ′ with rank(A) ≥ r. Then Lemma  37 

implies that there exists a completely pseudo-regular B ∈ S \
(Y ∪ T ) with rank(B) ≥ r, contradicting our assumption.

A second lemma allows us to bound the sizes of the sets
Rs, and will ultimately yield termination of the algorithm. Let
R ⊆Md(K) be a set of completely pseudo-regular matrices.
We define a directed graph G(R), whose vertex set is R and
having a directed edge A→ B if ker(B)∩ im(A) = 0. (Loops
are permitted, but this shall not make a difference in our
considerations.) In the following,  2) should be compared to
[ 22 , Proposition 8].

Lemma 38. 1) If A, B ∈ G(R) are contained in the same
strongly connected component (SCC), then A ∼S B.

2) The graph G(R) has at most
(
d
r

)
SCCs of rank r.

Proof.  1) Observe: if there is an edge C → D in G(R), then
ker(DC) = ker(C) and rank(D) ≥ rank(DC) = rank(C).
So if C, D are two elements of the same SCC, then rank(C) =
rank(D); if C → D is an edge, then also im(DC) = im(D).

Now let there be paths A → C1 → · · · → Ck → B and
B → D1 → · · · → Dl → A. Set Q := BCk · · ·C1A and P :=
ADl · · ·D1B. Then im(QAP ) = im(B) and ker(QAP ) =
ker(B), so that B ∥ QAP . Symmetrically, A ∥ PBQ.

 2) Let A1, . . . , Ak be vertices in distinct SCCs of rank r.
Define Ai ≥ Aj if there is a path from Ai to Aj . This relation
is reflexive, transitive, and, since Ai and Aj are in distinct
SCCs, anti-symmetric. Thus it is an order relation and we may
reindex the matrices in such a way that there is no path from
Aj to Ai if j > i. In particular, ker(Ai) ∩ im(Aj) ̸= 0 for
j > i and kerAi ∩ imAi = 0. By Lemma  28 , k ≤

(
d
r

)
.

Theorem 39. For a closed set X ⊆Md(K) and S = ⟨X⟩, it
is possible to compute S.

Proof. We show that Algorithm  2 terminates and outputs S.
First note, in TRYCLOSE, the inclusions X ⊆ Ys ⊆ S

and Ts ⊆ S hold for all s. In particular X ⊆ Y1 ⊆ S. If
Algorithm  2 terminates, then Y 2

1 ⊆ Y1, and so Y1 ⊆ S is
a closed overmonoid of X contained in S, so S ⊆ Y1 ⊆ S
and thus Y1 = S. Thus only the termination of the algorithm
remains to be shown. We start with two observations.

a) In TRYCLOSE, if Ys+1 contains {B ∈ S : rank(B) ≥ s+
1 } and Ys+1 ∪ Ts contains all completely pseudo-regular
elements of rank s, then Ys contains {B ∈ S : rank(B) ≥
s } by  2) of Lemma  36 . Since this condition trivially holds
for s = r(X) (as {B ∈ S : rank(B) ≥ r + 1 } = ∅), it
suffices to construct the sets Ts so that Ys+1 ∪ Ts covers
the completely pseudo-regular elements of rank ≥ s, to
obtain S ⊆ Y1 inductively.

b) Throughout the algorithm, Rs is a finite set of completely
pseudo-regular elements of rank s. Further, if {A ∈ S :
rank(A) ≥ s + 1 } ⊆ Ys+1, then the elements of Rs

are pairwise ∼S -inequivalent. (This follows because any

element added to Rs is chosen outside of Ts and  1) of
Lemma  36 .) Then |Rs| ≤

(
d
s

)
by Lemma  38 .

Conversely, if we ever end up with |Rs| >
(
d
s

)
in the

algorithm, we must have missed a completely pseudo-
regular element of rank > s, and we search for such an
element (loop at line  6 ).

To show that the algorithm terminates, we now show:
1) in line  7 , the call to FINDCPR always returns a completely

pseudo-regular element B of S of some rank s′ > s, with
B not contained in Ys′+1 ∪ Ts′ ;

2) the loops in lines  4 and  6 terminate.
 1) When we call FINDCPR there always exists s′ > s and

A ∈ S \ Ys′ with rank(A) ≥ s′: for the first iteration (s = 0),
the failed check on line  4 implies S ̸⊆ Y1. In any other iteration,
we have |Rs| >

(
d
s

)
, so {A ∈ S : rank(A) ≥ s+ 1 } ̸⊆ Ys+1.

Thus, in FINDCPR, there exists n ≥ 0 and s′ > s such that
Xn \ Cs′ ̸= ∅, and the loop will eventually discover such a
pair (n, s′). Then n ≥ 2

(
d
s′

)
+4, as X≤2( d

s′)+3 ⊆ Ys′ (lines  13 

and  16 ). We can pick such an element A = A1 · · ·An ∈ X\Cs′

(on line  23 ) using Lemma  17 . Lemma  37 gives the existence
of a completely pseudo-regular subproduct (chosen on line  24 ).

 2) Consider first the loop on line  6 . In each iteration s
increases by at least 1 (the rank of B is larger then the value
of s passed to FINDCPR). But at latest when s = r, we always
have |Rr| ≤

(
d
r

)
, by observation  b) , and the loop terminates.

Consider now the outer loop, on line  4 . Outside of the
loop on line  6 , always |Rs| ≤

(
d
s

)
for all s (inside the loop

still |Rs| ≤
(
d
s

)
+ 1). In each iteration we are increasing

the size of some Rs by one, while resetting all Rs′ with
s′ < s to the empty set. Since |Rr| ≤

(
d
r

)
and Rr is only ever

growing, eventually Rr must stabilize. Once this is the case,
the algorithm does not modify Rr any more and only touches
the sets Rr−1, . . . , R1. At this point Rr−1 can only ever grow.
Thus, eventually, Rr−1 will also stabilize at |Rr−1| ≤

(
d

r−1

)
.

Inductively we conclude that eventually all the sets Rr−1,
. . . , R1 stabilize (there are no more new completely pseudo-
regular elements to discover), and the algorithm stops.

Remark 40 (Efficiency). 1) While the algorithm largely
works with linear algebra, and avoids the use of Gröbner
bases (which can be computationally inefficient), the
function FINDCPR appears to be an obstacle to a
reasonably efficient implementation. In particular, in the
computation of elements in Xn \ Cs′ , the exponent n
may become very large (there is no upper bound) and
one needs to consider very long products of (generic)
matrices. An obvious way of improving the algorithm, is
therefore to find a better way of discovering the completely
pseudo-regular elements.

2) In FINDCPR, crucially, we choose the elements in
Xn \ Cs′ instead of Xn \ Cs′ (which would be nicer
computationally), to avoid higher rank elements that may
potentially appear in the closure (Example  24 ).

3) We do not get runtime bounds. The problem is a lack of
a bound for n in FINDCPR, and the lack of bounds on
the number of steps in Algorithm  1 .



Remark 41 (Output size). For X ⊆Md(K) closed, let c(X)
be the number of irreducible components of X . Let S = ⟨X⟩.
We sketch a double-exponential upper bound for c(S) (and
therefore also for the linear hull). We only consider K = Q.

First consider the group case (i.e., GLd(Q) is dense in X).
In this case, we get a double-exponential bound in d that does
not depend on X: let G := S ∩ GLd(Q) and let G0 be the
irreducible component containing I . We need to bound |G/G0|.
In Theorem  22 , we saw that G/G0 is a subgroup of GLd′(Q)
for some d′. The embedding arises from applying [ 8 , Theorem
II.6.8]. Tracing through [ 8 ], in our linear setting, gives

d′ ≤
((

d2

r

)
+ d

)2

≤
(
2d

2

+ d
)2 ≤ 4 · 4d

2

(for some r, using that the binomial coefficients sum to 2d
2

).
Finite subgroups of GLd′(Q) have cardinality at most 2d

′
d′!

if d′ > 10 and for smaller d′ the maximal sizes are also
known ([ 5 , Table 1]) 

10
 . So c(S) ≤ 24·4

d2

(4 · 4d2

)! for all d.
In general, one gets a bound that is double-exponential in d,
by combining the group case with induction on the recursive
strategy Lemma  36 (the bound depends on c(X)).
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Math. (N.S.), vol. 27, no. 3, pp. Paper No. 34, 34, 2021.

[4] ——, “Computing the linear hull: Deciding sequential? and unam-
biguous? for weighted automata over fields,” 2023, arXiv version,
 arXiv:2209.02260 .

[5] N. Berry, A. Dubickas, N. D. Elkies, B. Poonen, and C. Smyth, “The
conjugate dimension of algebraic numbers,” Q. J. Math., vol. 55, no. 3,
pp. 237–252, 2004.

[6] J. Berstel and M. Mignotte, “Deux propriétés décidables des suites
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APPENDIX

A. Other fields

In the main text we restricted the field K to be a number
field (that is, a finite field extension of Q). This restriction
was made for simplicity of exposition. In truth our approach
does not impose restrictions on the nature of the field, except
for the obvious necessity of the field being computable,
by which we mean (informally) that elements of the field
can be represented exactly with finite memory, and equality
comparisons between elements as well as the operations +,
·, −, / can be computed exactly and in finite time. This
allows us to carry out linear algebra (Gaussian elimination)
and computations with polynomials over such a field.

The rational numbers and finite fields of prime order (fields
of the form Fp = Z/pZ with p a prime number) are computable.
Finite-dimensional field extensions of computable fields are
again computable when given by, e.g., generators and relations,
or by a basis together with structure coefficients explaining
the multiplication of basis elements. Fields such as R or
C are not computable in this sense, however the field of
algebraic numbers Q is computable (and implemented, for
instance, in the SageMath computer algebra system). The field
Q(π) is computable, because π is transcendental and therefore
Q(π) ∼= Q(x) is a rational function field. The field Q(π, e) is
not known to be computable, because it is an open question
in transcendence theory whether π and e are algebraically
independent over Q.

When considering a weighted automaton, we may always
work over fields that are finitely generated (but not necessarily
finite-dimensional) over their prime field (Q or Fp, depending
on the characteristic). Namely, we can take the field generated
by all the entries of the vectors and matrices appearing in a
linear representation of the automaton. Let K be a finitely
generated field. Then K is a finite field, a number field, or
a finitely generated extension of a finite or a number field
K0. In the latter case, K is the field of fractions of an affine
K0-algebra R. We shall assume that R is given by specifying
generators and relations for R over K0. That makes R, and
therefore K, computable.

We now outline, section by section, which changes need to
be made to deal with finitely generated fields.

1) Section  II : If K is a finite field, then every vector space
can be covered by a finite number of one-dimensional spaces
(lines through the origin). In this case, the irreducible closed sets
in the linear Zariski topology are the vector spaces of dimension
≤ 1. It follows that the linear hull always has dimension ≤ 1,
and it becomes trivial to compute it. As a consequence, one
recovers the well-known result that a weighted automaton over
a finite field is always determinizable.

If K is an infinite field, the results in section  II remain valid
as stated.

2) Section  III : The algebraic closure Q of Q has to be
replaced by the algebraic closure Kalg of K throughout. While
the conclusion of Theorem  10 remains true, several of the

lemmas leading up to it, as well as the proof of Theorem  10 

itself, have to be adapted for the general case.
Write µ(Kalg) for the group of all roots of unity. If charK =

p > 0, then p does not divide the order of any root of unity.
For an integer 0 ̸= n ∈ Z, let vp(n) ∈ N0 denote the p-adic
valuation, i.e., the number of times that p divides n.

Lemma 42. Let K be a field. Let A ∈ GLd(K).
1) Assume that for any two eigenvalues λ, λ′ ∈ Kalg of A

for which λ/λ′ ∈ µ(Kalg), it holds that λ = λ′. Then a
vector space V ⊆ Kd is A-invariant if and only if it is
An-invariant for all n ≥ 1 with charK ∤ n.

2) If charK = p > 0, and V ⊆ Kd is Apn

-invariant for
some n ≥ 0, then V is Ape

-invariant for e = vp((d−1)!).

Proof. Without restriction, assume K = Kalg.
 1) The proof is the same as the one of Lemma  11 . The

extra assumption charK ∤ n (which is automatically satisfied
if charK = 0) is necessary and sufficient for a primitive n-th
root of unity ζ ∈ Kalg to exist.

 2) Using the direct-sum decomposition of V along gener-
alized eigenspaces, we can, as in the proof of Lemma  11 ,
restrict to the case where A has a single eigenvalue λ (if
(λ/λ′)p

n

= 1, then λ = λ′). Then A−λ = N for some matrix
N with Nd = 0. Now

Apk

= (λ+N)p
k

=

min{d−1,pk}∑
i=0

(
pk

i

)
λpk−iN i.

So, if k ≥ e := vp((d− 1)!), then
(
pk

i

)
= 0 for i ∈ [1, d− 1]

and Apk

= λpk

. Thus, if V is Apk

-invariant for some k ≥ 0,
then it is Ape

-invariant.

Lemma 43. Let K be a finitely generated field. There exists
a computable N0 = N0(d,K) such that, for every finite field
extension L/K with [L : K] ≤ d and every root of unity ζ ∈ L,
one has ζN0 = 1 and moreover charK ∤ N0.

Proof. This makes essential use of the fact that K is a finitely
generated field. Suppose first K = R = K0. Then either K is
a finite field, in which case the claim is trivial, or a number
field, in which case the claim follows from Lemma  12 .

Now consider the general case. By effective Noether nor-
malization [ 20 , Chapter 3.4], we can compute transcendental
x1, . . . , xn over K0, such that R is a finite module over
K0[x1, . . . , xn]. Then x1, . . . , xn is a transcendence basis for
K/K0. From the generating set of R as a K0[x1, . . . , xn]-
algebra, we can compute a bound m for the degree [K :
K0(x1, . . . , xn)]. If L is an extension of degree d of K, then
every element of L that is algebraic over K0 has degree ≤ md
over K0. Thus we can take N0(d,K) = N0(md,K0).

Lemma 44. Let K be a finitely generated field. Let p = charK.
Let N := N(d,K) := peN0(d

2,K) with e = vp((d− 1)!). Let
A ∈ GLd(K), and let V ⊆ Kd be a vector subspace. If V is
An-invariant for some n ≥ 1, then V is AN -invariant.

Proof. Let λ, λ′ ∈ Kalg be eigenvalues of A and let N0 =
N0(d

2,K). Since λ, λ′ are both roots of the characteristic



polynomial, which has degree d, the extension K(λ, λ′)/K
has degree at most d2. If there exists a root of unity ζ such
that λ/λ′ = ζ, then ζ ∈ K(λ, λ′) and hence ζN0 = 1. Thus
AN0 satisfies the assumption of  1) of Lemma  42 .

Now suppose that V is An-invariant with n ≥ 1 and let
n = pkm with k ≥ 0 and m coprime to p. Replacing n
by a multiple of itself if necessary, we may assume k ≥ e
and N0 | m. Applying  2) of Lemma  42 to the matrix Am

raised to the power pk, the space V is (Am)p
e

-invariant. Using
(Am)p

e

= (Ape

)m and N0 | m, we can now apply  1) of
Lemma  42 to deduce that V is ApeN0 -invariant.

Now the proof of Theorem  10 goes through as in the number
field case, with Lemma  13 replaced by Lemma  44 .

3) Section  IV : The proof of Lemma  17 uses that K is infinite,
on the one hand to be able to find arbitrarily large subsets,
and on the other to ensure that a nonzero polynomial does
not vanish everywhere. However, the conclusion of Lemma  17 

remains trivially true for finite fields.
The conclusion of Lemma  19 is true over any field, but the

stated proof requires the field to be infinite, to ensure that V ,
W are also irreducible in the Zariski topology. If K is a finite
field, and V and W are closed and irreducible subsets in the
linear Zariski topology, then V and W are the zero space or
one-dimensional vector spaces. In the latter case, they are not
irreducible in the Zariski topology (being a finite union of
their finitely many points). However, clearly VW is again the
zero space (if one of V and W is zero) or a one-dimensional
space (if V and W are one-dimensional), so the conclusion of
Lemma  19 holds trivially.

4) Section  V : No changes are necessary.

B. Integral domains that are not fields

Suppose that R is not a field but only a (commutative)
domain (such as Z) and consider the problem of deciding
determinizability and ambiguity for R-automata. Of course, one
can carry out the procedure over the quotient field K = q(R)
of R. However the existence of a deterministic K-automaton
equivalent to the initial one, may not imply the existence of a
deterministic R-automaton. Similar considerations apply for
unambiguous automata. Luckily, if R is completely integrally
closed we obtain the following.

Corollary 45. Let R be a finitely generated completely
integrally closed domain and A an R-automaton. Then it is
decidable if A is equivalent to an unambiguous R-automaton.
In this case a corresponding unambiguous R-automaton is
computable.

Sketch of proof. By [ 3 , Theorem 1.2], the R-automaton A is
equivalent to an unambiguous R-automaton, if and only if A
is equivalent to an unambiguous K-automaton over K. The
latter property can be decided by Theorem  1 .

Suppose A′ is an unambiguous K-automaton that is equiva-
lent to A (over K) and let S ∈ R⟨⟨X⟩⟩ be the corresponding
rational series. Using [ 3 , Proposition 6.1] we get a represen-
tation of S as an unambiguous K-rational series, and by [ 3 ,

Proposition 9.1] we obtain a representation as an unambiguous
rational series over R, which yields an R-automaton.

Unfortunately, passing through an unambiguous rational
series as in the previous corollary, and back to an unambiguous
automaton, it does not seem to be clear how to preserve
the deterministic property. However, if R is a principal ideal
domain (PID) there is a way to pass to R.

Corollary 46. Let R be a finitely generated PID and A
a R-automaton. Then it is decidable if A is equivalent to
a deterministic R-automaton. In this case a corresponding
deterministic R-automaton is computable.

Sketch of Proof. We claim that this again reduces to the same
question over K. Clearly, if A is equivalent to a deterministic
R-automaton, it is equivalent to a deterministic K-automaton.
Suppose conversely that A is equivalent to a deterministic K-
automaton. Then the linear hull of every minimal K-automaton
is at most one-dimensional [ 3 , Theorem 1.3].

Let (u, µ, v) be a minimal linear representation of A over
K. By [  7 , Theorem 7.1.1] we may assume that in fact u ∈
R1×d, µ(w) ∈ Md(R), and v ∈ Rd for all w ∈ Σ∗. Let
Ω := {uµ(w) : w ∈ Σ∗ }. Now there are a1, . . . , an ∈ K1×d

such that Ω ⊆ (Ka1 ∪ · · · ∪Kan) ∩R1×d. We may take the
coordinates of each ai to be in R and to be coprime. Then
Ω ⊆ Ra1∪· · ·∪Ran. This yields an R-deterministic automaton
equivalent to A (on n states) [ 29 , Proposition 5].

Corollaries  45 and  46 apply to the ring of integers Z, and
so Problem 1 of [ 29 ] also has a positive answer in this case.
The restriction to finitely generated domains is again so that
basic computations (and the linear algebra in Corollary  46 )
can indeed be carried out.

C. Derivation of bounds

We sketch how to derive the bounds on the output size
(Remark  41 ) in the case K = Q. As a first step, we know that
a quotient of a linear algebraic subgroup of GLd by a normal
subgroup is again linear algebraic (so, it can be be embedded in
some GLd′ ). This is a standard result in the theory of algebraic
groups [ 8 , Theorem II.6.8], but unfortunately, making d′ explicit
requires tracing through the proofs. We sketch how to do this,
following the proof in Borel’s book [ 8 ].

We are ultimately interested in the K-rational points G(K)
of a linear algebraic group G, but to obtain the desired result,
it is necessary to work in the language of algebraic geometry.
In a sense, this also means to consider the points G(Kalg) over
the algebraic closure Kalg of K. However, the varieties will be
defined over K and morphisms will be K-morphisms (see [  8 ,
§11] for the precise definitions), so the results then descend to
the group of K-rational points.

Consider the linear algebraic group GLd. It is defined over
our base field K, having the coordinate ring

K[GLd] = K[xij ,det(xij)
−1] ∼= K[xij , t]/(t det(xij)− 1).

(here i, j range over [1, d]).



The group GLd(K
alg) acts on Kalg[GLd] by left translation,

that is, for g ∈ GLd(K
alg) and f ∈ Kalg[GLd], the action

is defined by (g, f) 7→ λgf with λgf(x) = f(g−1x) for all
x ∈ GLd(K

alg) [ 8 , §II.1.9]. Here g−1x is just the usual the
matrix product.

Let L ⊆ Kalg[GLd] be the d2-dimensional Kalg-vector space
spanned by {xij : i, j ∈ [1, d] }. (This vector space is defined
over K, in the sense of [ 8 , §11.1].) Then L is invariant under
the GLd(K

alg)-action: taking f = xij and g, y ∈ GLd(K
alg)

with g−1 = (g′ij), y = (yij), we have

λgxij(y) = xij(g
−1y) =

d∑
ν=1

g′iνyνj =

d∑
ν=1

g′iνxνj(y),

so λgxij ∈ span{x1j , . . . , xdj } ⊆ L. By definition, the space
L contains all homogeneous linear polynomials in xij .

Now consider the case where G ≤ GLd is a subgroup which
is defined as the vanishing set of a set of homogeneous linear
polynomials in the xij and with coefficients in K (this is
the situation we are dealing with in section  IV ). Solving the
linear system, we obtain a subset I ⊆ [1, d]2 such that the
{xij : (i, j) ∈ I } form a set of free variables for the system.

The coordinate ring K[G] is he quotient of K[GLd] by these
equations. We may think of it as

K[G] = K[xij , f(xij)
−1] ∼= K[xij , t]/(tf(xij)− 1),

where now (i, j) ∈ I and f(xij) is a polynomial in xij with
(i, j) ∈ I , obtained from the determinant by substituting the
solution of the linear system. As in the case G = GLd before,
the group G(Kalg) acts on Kalg[G] by left translation, and
we have a G(Kalg)-invariant vector subspace LG spanned by
{xij : (i, j) ∈ I } and with dim(LG) = |I| ≤ d2.

The following is a version of [ 8 , Theorem II.6.8], restricted
to our setting, that gives an explicit bound on the dimension
of a matrix group that G/N can be embedded in.

Proposition 47. Let G ≤ GLd be a K-subgroup. Let N ⊆ G
be a closed normal K-subgroup, defined as a K-variety in
G by homogeneous linear polynomials in the matrix entries
{xij : (i, j) ∈ I }, with coefficients in K. Then there exists
r ∈ [1, d] such that G/N is an affine K-subgroup of GLd′ and

d′ ≤
((

d2

r

)
+ d

)2

≤ (2d
2

+ d)2.

Sketch of Proof. The vanishing ideal J ⊆ Kalg[G] of H is
generated by the homogeneous linear polynomials defining H .
Therefore, the finite-dimensional G-invariant subspace LG of
Kalg[G] contains this generating set of J . Let W = LG ∩ J
and r = dim(W ). Put E = (

∧r
V )⊕ (Kalg)d. Then

dimKalg(E) =

(
|I|
r

)
+ d ≤

(
d2

r

)
+ d.

Following the proof of [ 8 , Theorem II.5.1], this gives an
immersive representation α : G → GL(E) (defined over
K) and a line D =

∧r
V ⊆ E satisfying the conclusions

of [ 8 , Theorem II.5.1] with respect to H = N . As in [ 8 ,

Theorem II.5.6], this can be improved to N = ker(α) (and
the analogous condition n = ker(dα) on the associated
derivation), by replacing E by a subspace E′ of GL(E) (cf.
the third paragraph of the proof of [  8 , Theorem II.5.6]). Then
dim(E′) ≤ dim(E)2.

Finally, the proof of [ 8 , Theorem II.6.8] shows that G/N is
an affine K-subgroup of GL(E′).

Since the morphism in the previous proposition is a K-
morphism, it gives rise to an embedding of K-rational points
(G/N)(K) ⊆ GLd′(K). In the output of Algorithm  1 , the
subgroup N is the irreducible component of G containing
the identity, and G/N is finite. The number of irreducible
components of the output is |(G/N)(K)|. We have now seen
that (G/N)(K) is a finite subgroup of GLd′(K) with explicitly
bounded d′, so it suffices to bound the size of finite subgroups
of GLd′(K).

To do so, we now restrict to K = Q. By a theorem of Feit
[ 16 ], finite subgroups of GLd′(Q) have cardinality at most
2d

′
d′! if d′ > 10. For d′ ≤ 10, Feit also classified the finite

subgroups of maximal cardinality [ 5 , Table 1]. Unfortunately,
the theorem of Feit depends on unpublished work of Weisfeiler
(see the introduction of [ 18 ] or [  27 , §5, §6] for a discussion).
Let X ⊆ Md(K) be closed such that X ∩GLd(K) is dense
in X . Set S = ⟨X⟩. Under the assumption that the Feit result
holds, one obtains

c(S) ≤ 24·4
d2

(4 · 4d
2

)!

for all d by bounding (2d
2

+ d)2 ≤ 4 · 4d2

. (This also works
for d ≤ 10 because the bound is sufficiently large compared
to the cardinalities of finite subgroups listed in [ 5 , Table 1].)
Of course this bound is not sharp, e.g., for d = 1 it gives
≈ 1.3 · 1018, whereas in this case actually c(S) = 1.

Avoiding the use of unpublished work, independently of the
theorem of Feit, Friedland [ 18 ] uses a different (published)
result of Weisfeiler to show that a finite subgroup of GLd(Q)
has cardinality ≤ 2dd! for all sufficiently large d. From this
result one gets the existence of some double-exponential bound
for c(S), but not an explicit one. In any case, Weisfeiler’s
results, and hence these bounds, depend on the classification
of finite simple groups.

To extend a bound to different fields K, it would be necessary
to understand the maximal cardinality of finite subgroup of
GLd′(K).

Semigroup case. In the general (semigroup) case we get
a bound on the output size by combining the bound for the
group case with the recursive strategy of Lemma  36 . Here it is
no longer possible to obtain a bound that is independent of the
size of the input set (and that only depends on the dimension
d). To see this, consider a finite subset M ⊆ K and let

X =
⋃

m∈M

span

{(
1 m
0 0

)}
⊆M2(K),

which is a union of |M | pairwise distinct one-dimensional
vector spaces, so c(X) = |M |. One checks easily that X is a
semigroup.



Let us start with some easy observations: if X , Y ⊆Md(K)
are closed sets, then c(XY ) ≤ c(X) c(Y ). Thus

c(X≤n) ≤
n∑

i=1

c(X)i ≤ n c(X)n ≤ c(X)n+1,

and also c(X⊴n) ≤ 1 + n c(X)n ≤ c(X)n+1.
Now we can bound the size of the sets T (Y,A) (page  8 ):

Assume that C(d) is the maximal size of a finite subgroup
of Md(K). Then c(⟨T0(Y,A)⟩) ≤ C(r) (with r = rank(A)),
and

c(T (Y,A)) ≤ C(r) c(Y )2(
d
r)+4.

Looking at TRYCLOSE and keeping in mind Lemma  38 , we
get

c(Ts) ≤
(
d

s

)
C(s) c(Ys)

2(dr)+4 ≤ 2dC(d) c(Ys)
2d+4,

and

c(Ys) ≤
(
c(Ys+1) + c(Ts)

)2(ds)+3

≤
(
c(Ys+1) + 2dC(d) c(Ys)

2d+4
)2d+3

.

Suppose C(d) satisfies a double-exponential bound, i.e.,
C(d) ≤ 22

Q(d)

for some polynomial Q(s). Then also c(Ys)
satisfies a double exponential bound, i.e.,

c(Ys) ≤ c(Ys+1)
2P0(d)

,

for a suitable polynomial P0(d) (which does not depend on
Ys+1). Inductively, we get

c(S) = c(Y1) ≤ c(X)2
(d−1)P0(d)

.

So altogether we obtained the following.

Proposition 48. If X ⊆Md(Q) is a closed set and S = ⟨X⟩,
then the number of components c(S) of S can be bounded by

c(S) ≤ c(X)2
P (d)

,

with P (d) a suitable polynomial. A similar upper bound holds
for the number of components of the linear hull of a Q-
automaton.

The conclusion holds over any field K where one has a
bound on cardinality of a finite subgroup of GLd(K) that is
double-exponential in d.
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