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Abstract. In this note, we extend results about unique nth roots and cancel-
lation of finite disconnected graphs with respect to the Cartesian, the strong
and the direct product, to the rooted hierarchical products, and to a modified
lexicographic product. We show that these results also hold for graphs with
countably many finite connected components, as long as every connected compo-
nent appears only finitely often (up to isomorphism). The proofs are via monoid
algebras and generalized power series rings.

1. Introduction

It is well known that prime factorization of disconnected graphs with respect to
the Cartesian product is in general not unique. Nonetheless, Fernández, Leighton,
and López-Presa [ 15 ] showed the uniqueness of nth roots for disconnected graphs
with respect to the Cartesian product, and Imrich, Klavžar and Rall [ 27 ] proved the
cancellation property. They also extended the result to the strong and the direct
product, but the question whether these properties extend to graphs consisting of
countably many finite connected components remained open.

Here we provide an affirmative answer, also for the rooted hierarchical product,
the rooted generalized hierarchical product, and a variant of the lexicographic
product. We first show that the unique root and cancellation properties hold for
the rooted generalized hierarchical product of countable graphs consisting of finite
connected components of finite multiplicities, and then extend the result to the
other products.

The proofs involve monoid algebras, which are associated with the products, and
generalized power series rings. Along the way, we state sufficient conditions for a
semiring of graphs under a given graph product to arise as a monoid semiring, and
hence for such a graph semiring to embed into a monoid algebra.

All products considered here are defined on the Cartesian product of the vertex
sets of the factors. They are associative, and admit a neutral element. With the
exception of the lexicographic product, they are right and left distributive on their
domains with respect to the disjoint union. The lexicographic product is only
right distributive. Apart from the direct and the lexicographic product, they are
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disconnected if and only if at least one factor is disconnected. We do not allow
multiple edges, and loops only for the direct product, and a variant of the Cartesian
product.

We call a graph prime if it is non-trivial, that is, if it has at least two vertices,
and if it cannot be represented as a product of two non-trivial graphs. This differs
from the terminology of factorization theory, where one would speak of irreducible
graphs. Each finite graph clearly has a representation as a product of prime graphs,
and a representation as a product of prime graphs is a prime factorization. If the
presentation is unique up to isomorphisms and the order of commuting prime
factors, we speak of the unique prime factorization property. Usually, only connected
graphs have unique prime factorizations.

The disconnected graphs that we consider are countable with finite connected
components, all of which are of finite multiplicity.
Acknowledgments. Klep was supported by the Slovenian Research Agency
program P1-0222 and grants J1-50002, J1-2453, N1-0217, J1-3004. Smertnig was
supported by the Slovenian Research and Innovation Agency (ARIS): Grant P1-0288
and the Austrian Science Fund (FWF): P 36742.

2. Rooted, and rooted generalized, hierarchical products

The rooted generalized hierarchical product, introduced in 2009 by Barrière, Dalfó,
Fiol and Mitjana [ 3 ], gives rise to the most interesting monoid algebra considered
here. Let G, H be graphs with distinguished, nonempty subsets U ⊆ V (G),
V ⊆ V (H), the root sets of G and H. Then the generalized rooted hierarchical
product G[U] ⊓H[V ] has root set U × V , and a pair of vertices (g, h), (g′, h′) is
joined by an edge if either g = g′ and hh′ ∈ E(H), or if gg′ ∈ E(G) and h = h′ ∈ V .
The asymmetry of G and H in the definition accounts for non-commutativity.

This product is closely related to the Cartesian product G ◻H of graphs without
root sets, where (g, h)(g′, h′) is an edge if either g = g′ and hh′ ∈ E(H), or if
gg′ ∈ E(G) and h = h′. Clearly, the Cartesian product is commutative.

Furthermore, as the edge sets of G[V (G)] ⊓H[V (H)] and G ◻H are the same,
we can consider the Cartesian product as a special case of the rooted generalized
hierarchical product, and call a factor Cartesian if its root set equals its vertex set.

The neutral element of the generalized rooted hierarchical product is the trivial
rooted one-point graph K1.

Imrich, Kalinowski and Pilśniak [ 26 , Theorem 5] show that finite connected
graphs with nonempty root sets have the unique prime factorization property with
respect to the rooted generalized hierarchical product. This extends the unique
prime factorization property of connected finite graphs with respect to the Cartesian
product, which was first shown in 1960 by Sabidussi [ 35 ] and independently, in
1963, by Vizing [ 37 ].

As such the rooted generalized hierarchical product is not right distributive,
unless one restricts its domain to graphs where each connected component has a
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non-empty root set. Clearly, this class of graphs is closed with respect to the rooted
generalized hierarchical product and coincides, on connected graphs, with the
rooted hierarchical product. We call it the modified rooted generalized hierarchical
product.

A graph whose root set consists of exactly one vertex is called rooted. If one
restricts the domain of the generalized rooted hierarchical product to rooted graphs
one obtains the rooted hierarchical product, which was introduced in 2009 by Barrière,
Comellas, Dalfó and Fiol [ 2 ]. Again, it is not right distributive, unless one restricts
its domain to graphs where each connected component is rooted. We call it the
modified rooted hierarchical product. On connected graphs it coincides with the
rooted hierarchical product.

This product is strictly non-commutative. In other words, two connected non-
trivial rooted graphs G[g] and H[h] commute if and only if there exists a rooted
graph A[a], such that G[g] and H[h] are powers of A[a].

If M is a class of rooted graphs closed with respect to the rooted hierarchical
product, then the elements of M form a monoid with respect to the induced
operation (under the assumption that the isomorphism classes indeed form a set, to
avoid set-theoretic issues). 

1
 If M is taken to be the class of rooted connected finite

graphs, then the resulting monoid is a free monoid on countably many generators
by [ 26 , Corollary 2.6] (with the generators corresponding to rooted prime graphs,
the prime elements with respect to the particular operation).

For the rooted generalized hierarchical product one considers multiply rooted
graphs. By [ 26 , Theorem 4.2] one obtains a unique decomposition in which two
factors commute if and only if they are isomorphic or if they are both Cartesian.
More formally, the monoid under discussion is isomorphic to the coproduct of
monoids

[Y ] ∗ ⟨X⟩,

where [Y ] is a free abelian monoid on the countable set Y (corresponding to the
Cartesian rooted prime graphs) and ⟨X⟩ is a free monoid on the countable set X
(corresponding to the non-Cartesian rooted prime graphs). The notations [Y ], ⟨X⟩
are non-standard but convenient in the present paper.

3. Monoid algebras and generalized power series rings

Let M be a set of graphs that is closed under some associative product ⋅ and
possesses a multiplicative identity element 1. Then (M, ⋅, 1) forms a monoid.
Suppose that M is also closed under disjoint unions + and contains the empty
graph 0. Then (M,+, 0) forms a commutative monoid, with neutral element 0. The

1To be precise, we consider a monoid of isomorphism classes of graphs. However, in the interest
of brevity and to follow the usual conventions, we speak of graphs with the tacit understanding
that they are to be considered up to isomorphisms of rooted graphs, respectively multiply rooted
graphs.
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monoid (M,+, 0) is always cancellative, that is a + b = a + c implies b = c, by the
uniqueness of the connected components of a graph.

If the graph product under consideration is distributive with respect to the
disjoint union, then the two structures combine to give a semiring (M,+, ⋅, 0, 1), with
disjoint unions serving as addition and the graph product serving as multiplication.
Formally, the structure (M,+, 0) is a commutative monoid, the structure (M, ⋅, 1)
is a monoid, and the following hold for all a, b, c ∈M :

c(a + b) = ca + cb, (a + b)c = ac + bc, 0a = 0 = a0.

In contrast to a ring, the addition need not have inverses. Indeed, in our case,
addition is the disjoint union of graphs, so only the empty graph has an additive
inverse.

More information on semirings can be found in Hebisch and Weinert [ 19 ], although
the notion of a semiring is slightly more permissive there, in that it does not require
a 0. The semirings under consideration here are semirings with absorbing zero in
the terminology of Hebisch and Weinert.

Definition 3.1. A graph semiring is a semiring consisting of (isomorphism classes
of) graphs, with the disjoint union of graphs as addition.

In the following, we establish that, under mild conditions, graph semirings embed
as sub-semirings into monoid semirings and even into (well-understood) monoid
algebras. We also establish sufficient conditions for these (semi)rings to be strictly
ordered. All of the arguments are straightforward, but since they draw from a
setting that we assume most potential readers not to be very familiar with, we
carry them out in some detail.

Let S be a semiring and (M, ⋅, 1) a multiplicative monoid. The monoid semiring
of M , denoted by S[M] consists of formal S-linear combinations of elements of M ,
with componentwise addition and the product extended linearly from the one on
M . Thus, an element of S[M] is a formal sum

f = ∑
m∈M

fmm, with fm ∈ S, only finitely many of which are nonzero,

and where the coefficients fm are uniquely determined by the element f . More
formally, we can consider S[M] to be the set of functions f ∶M → S. If S is a ring,
then so is S[M]. We will only need to consider the monoid semiring N0[M] and
the monoid algebra Z[M].

The inclusion map j∶M → N0[M] is a multiplicative homomorphism. The
monoid semiring N0[M] is characterized by the following universal property: for
every homomorphism of multiplicative monoids f ∶M → T , with T a semiring, there
exists a unique semiring homomorphism f ∶N0[M] → T such that f = f ○ j.

The monoid algebra Z[M] satisfies the analogous universal property in the
category of rings (that is, when T is a ring).

Proposition 3.2. Let M be a graph semiring with the following properties.
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(1) The connected graphs in M form a submonoid M0, that is, products of connected
graphs are connected and the multiplicative identity is connected.

(2) Every graph in M has a finite number of connected components.
Then

N0[M0] ≅M.

Proof. By the universal property of the monoid semiring, there exists a semiring
homomorphism π∶N0[M0] →M with π(m) =m for all m ∈M0. By condition  (2) ,
π is surjective. To show injectivity, let

f = ∑
m∈M0

fmm and g = ∑
m∈M0

gmm ∈ N0[M0]

with π(f) = π(g). Then π(f) has precisely fm connected components isomorphic
to m, and π(g) has gm such components. Hence fm = gm. □

Remark 3.3. (1) Condition  (2) is clearly necessary for surjectivity, as we have
no way of representing a graph with infinitely many isomorphic connected
components in N0[M0]. This can easily be fixed by replacing N0 with a larger
semiring, involving infinite cardinals and their cardinal arithmetic. In the
cases of interest to us, we will later exploit N0[M] ∖ {0} being multiplicatively
cancellative, which does not generalize to infinite cardinals due to the non-
cancellative nature of cardinal arithmetic. See Example  4.3 .

(2) Not every graph product preserves connectivity, for instance, the direct product
of two connected bipartite graphs is not connected.

We now slightly extend our notions to permit infinitely many connected compo-
nents in our graphs, as long as each connected component has finite multiplicity
(Example  4.3 illustrates why this condition is natural). Order relations on monoids
and semirings will play a central role in the following arguments.

Definition 3.4.
(1) A monoid (M, ⋅, 1) is strictly ordered if there exists a (total) order ≤ on M such

that
a < b implies ac < bc and ca < cb for all a, b, c ∈M .

(2) A monoid is strictly well-ordered if it is strictly ordered by a well-order.
(3) A semiring S is strictly ordered if there exists a (total) order on S such that for

all a, b, c ∈ S, with a < b,
a + c < b + c, if c > 0, then ac < bc, and if c < 0, then ac > bc.

Let M be a strictly well-ordered monoid and let S be a semiring. We define
a generalized power series ring S((M)) as follows. The elements f of S((M)) are
functions f ∶M → S, which we represent in a power series notation

f = ∑
m∈M

f(m)m.
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The addition is defined pointwise, and the multiplication is defined in the usual
way using the Cauchy product

fg(m) = ∑
x,y∈M
m=xy

f(x)g(y).

Crucially, the strict well-order on M ensures that the sum on the right sides has
only finitely many terms, so that the expression indeed makes sense. It is then
straightforward to verify that S((M)) is a semiring. If S is a ring, then S((M))
is even a ring. Again, we will only be interested in the semiring N0((M)) and the
ring Z((M)).
Remark 3.5. The definition of S((M)) is a mild variation on various existing
definitions. For a strictly ordered monoid M and a (semi)ring R one can define the
ring of generalized power series R((M)) consisting of all series having well-ordered
support. The case when M is a group (and typically S is a field) is that of Hahn–
Mal’cev–Neumann series. For M a commutative monoid and S a commutative ring,
the notion has been studied in particular by Ribonboim in the 1990s in a series of
papers, see for instance [  34 ]. More general noncommutative and skew versions have
recently also been intensely studied, we mention [ 31 ,  36 ] as entry points into the
extensive literature. In the context of semirings, the semiring of formal power series
S⟪X⟫, which is S((M)) with M = ⟨X⟩ a finitely generated free monoid, appears in
the study of noncommutative rational series and weighted automata [ 5 ].
Proposition 3.6. Let M be a graph semiring with the following properties.
(1) The connected graphs in M form a submonoid M0.
(2) No graph in M has infinitely many isomorphic connected components.
(3) The set M contains all (infinite) disjoint unions of elements of M0, subject to

the restriction  (2) .
(4) The monoid M0 is a strictly well-ordered monoid.
Then

N0((M0)) ≅M.

Proof. The conditions  (1) and  (4) ensure that N0((M0)) is well-defined. The map
f ∶N0((M0)) →M, ∑

m∈M0

fmm↦ ∑
m∈M0

fmm,

is well-defined by  (3) (recall that the sum on the right is the disjoint union of
graphs, whereas the sum on the left just stems from the power series notation
used for N0((M0))). It is routine to check that f is a semiring homomorphism.
The uniqueness of the connected components again implies that f is injective.
Condition  (2) ensures that f is surjective. □

Proposition 3.7. Let S be a strictly ordered semiring and let M be a strictly
ordered monoid.
(1) S[M] is a strictly ordered semiring.
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(2) If the order on M is a well-order, then S((M)) is a strictly ordered semiring.

Proof. We first deal with S((M)), as S[M] is similar but easier. Let f ≠ g ∈ S((M)).
Let m ∈M be the smallest element for which f(m) ≠ g(m) (the minimum exists
because M is well-ordered). We define f < g if f(m) < g(m). The relation ≤ is
reflexive and anti-symmetric.

For transitivity, let f < g and g < h. Let m, m′ ∈ M be the smallest elements
for which f(m) ≠ g(m), respectively, g(m′) ≠ h(m′). If m = m′, then transitivity
of the order on S implies f < h. If m < m′, then f(m) < g(m) = h(m) and
f(m′′) = g(m′′) = h(m′′) for all m′′ < m. If m > m′, then f(m′) = g(m′) < h(m′)
and f(m′′) = g(m′′) = h(m′′) for all m′′ <m′. In any case f < h.

If f < g, then f +h < g+h follows from the coefficient semiring S having the same
property. Note that h > 0 if and only if h ≠ 0 and the coefficient of the smallest
element of the support of h is positive in S. Let f < g and h > 0. We have to show
fh < gh. If x < x′ and y < y′ in M , then xy < xy′ < x′y′. Let m ∈M be the smallest
element for which f(m) ≠ g(m), and let m0 ∈M be the smallest element for which
h(m0) ≠ 0. Then

fh(mm0) = f(m)h(m0) + ∑
x,y∈M

mm0=xy,(x,y)≠(m,m0)

f(x)h(y).

For any nonzero summand in the right sum, we have y >m0, and hence x <m. But
then f(x) = g(x), so that

fh(mm0) = f(m)h(m0) + ∑
x,y∈M

mm0=xy,(x,y)≠(m,m0)

g(x)h(y).

Since also

gh(mm0) = g(m)h(m0) + ∑
x,y∈M

mm0=xy,(x,y)≠(m,m0)

g(x)h(y),

the strict order on S gives gh(mm0) > fh(mm0) (we used h(m0) > 0 and f(m) <
g(m)). If m′ < mm0, then a similar argument shows gh(m′) = fh(m′), so that
altogether fh < gh.

If h < 0, we find fh > gh in the same way using h(m0) < 0. Hence S((M)) is a
strictly ordered semiring.

In the same way, it follows that S[M] is a strictly ordered semiring. Because
the support of every element is finite, each such non-empty set has a minimum,
even when M is not well-ordered. □

Proposition 3.8. Let S be a strictly ordered semiring, and let a, b ∈ S, and
c ∈ S ∖ {0}.
(1) If ac = bc, then a = b, and symmetrically, if ca = cb, then a = b.
(2) If a, b ≥ 0 and an = bn for some n ≥ 1, then a = b.



MONOID ALGEBRAS AND GRAPH PRODUCTS 8

Proof. We first show cancellativity. Suppose that a ≠ b ∈ S. Without restriction
a < b. Let 0 ≠ c ∈ S. If c > 0, then ac < bc, and hence ac ≠ bc. If c < 0, then ac > bc,
and again ac ≠ bc.

If an = bn for n ≥ 1 and a = 0, then also b = 0, by the same argument as before.
Let a, b ∈ S with a, b > 0. Suppose a ≠ b. Without restriction a < b. We show
an < bn for n ≥ 2 by induction on n. Indeed, if an−1 < bn−1 then an = an−1a < bn−1a
and bn−1a < bn−1b = bn. □

To show the cancellation, respectively, unique root property for a graph product,
it is therefore sufficient to show that the corresponding graph semiring is strictly
ordered.

The free abelian monoid [Y ] and the free monoid ⟨X⟩ are both strictly well-
ordered. On [Y ], we use the lexicographical order. Explicitly, after choosing an
arbitrary order on Y , elements a ∈ [Y ] have a unique representation a = ye1

1 ⋯yer
r

with y1 < ⋯ < yr and ei > 0. We compare two elements by comparing the exponent
of the smallest factor (and set 1 ≤ a for all a).

In the case of the free monoid ⟨X⟩, we use the shortlex order. We choose an
arbitrary well-order on the alphabet X. Elements of ⟨X⟩ are words in X, and we
set a < b if either ∣a∣ < ∣b∣, or ∣a∣ = ∣b∣ and the left-most letter in which a and b differ is
smaller in a than in b. Note that the lexicographic order itself (without comparing
lengths first) does not give a well-order, as in that case, if x, y are letters with
x < y, then

y > xy > x2y > . . . ,

is an infinite descending chain.
Thus both [Y ] and ⟨X⟩ are strictly well-ordered monoids. Before we can show

that this well-ordering ascends to the coproduct, we need another lemma.

Lemma 3.9. Let A be a strictly well-ordered monoid.
(1) For all a ∈ A ∖ {1} one has a > 1 and therefore min(A) = 1.
(2) Every a ∈ A has only finitely many representations a = a1⋯an with n ≥ 0 and

a1, . . . , an ∈ A ∖ {1}.

Proof.  (1) Let a ∈ A∖{1} and suppose a /> 1. Then a < 1, and an−1 > an for all n ≥ 1.
Thus {an ∶ n ≥ 0} has no minimum, in contradiction to the well-ordering of A.

 (2) Recall that a quasi-order is a reflexive and transitive relation. A well-quasi-
order is a quasi-order ≼ such that for every infinite family (ai)i∈N0 there exist i < j
with ai ≼ aj.

We consider the free monoid M = ⟨A∖{1}⟩ of all words in A∖{1}. To distinguish
the products in M and in A, we use the symbol ∗ for the product on M . We have
to show that the homomorphism π∶M → A, a1 ∗⋯ ∗ am ↦ a1⋯am has finite fibers.

On M we can define the subword quasi-order as follows: If w = a1 ∗ ⋯ ∗ am

and w′ = a′1 ∗ ⋯ ∗ a′n then w ≼ w′ if and only if there exists a strictly increasing
map f ∶ {1, . . . , m} → {1, . . . , n} such that ai ≤ a′

f(i) for all 1 ≤ i ≤ m (here ≤ is the
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well-order on A). By Higman’s lemma (see e.g. [  20 , Theorem 4.3] or [ 33 , Theorem
1.6]), the quasi-order ≼ is a well-quasi-order.

Now suppose that there exists a ∈ A such that π−1({a}) is infinite. By the well-
quasi-ordering on M , there exist w ≠ w′ in π−1({a}) with w ≼ w′. Say w = a1∗⋯∗am

and w′ = a′1 ∗⋯∗ a′n with ai, a′j ∈ A∖ {1}. Let f ∶ {1, . . . , m} → {1, . . . , n} be strictly
increasing with ai ≤ a′

f(i). Then w ≠ w′ implies n >m or a′
f(i) > ai for some i. But

then a = a′1⋯a′n > a1⋯am = a in A, a contradiction. □

Remark 3.10. The second claim of Lemma  3.9 implies in particular that A is a finite
factorization monoid (every element has only finitely many distinct factorizations
into irreducibles). The application of Higman’s lemma here is reminiscent of the
one of Cossu and Tringali in [ 13 , Theorem 4.11], where they deduce that for certain
monoids the bounded factorization property already implies the finite factorization
property. Unlike in their proof, we do not need to assume a priori that elements
in A only have factorizations of bounded lengths, because the well-ordering on A
together with Higman’s lemma implies that.
Lemma 3.11. If A and B are strictly well-ordered monoids, then the coproduct
A ∗B is also strictly well-ordered.
Proof. Since A and B are in particular strictly (totally) ordered, the coproduct A∗B
can also be strictly ordered (see [ 29 ] or [ 4 , Theorem 16] for this non-trivial fact).
Moreover, taking a lexicographical order on the Cartesian product A ×B, we can
assume that the order on A ∗B is such that the canonical monoid homomorphism
π∶A∗B → A×B is order-preserving, meaning f ≤ g implies π(f) ≤ π(g) (again [ 29 ]
or [  4 , p.322, §5, paragraph after (20)]).

We show that this order on A ∗ B is a well-order. Every element f ∈ A ∗ B
can be represented as f = a1b1a2b2⋯ambm with a1 ∈ A, bm ∈ B and all other
ai ∈ A ∖ {1A} and bi ∈ B ∖ {1B} (the first and last letter are unrestricted to permit
representations that start with a factor in B or end with a factor in A). Then
π(f) = (a1⋯am, b1⋯bm). If g = a′1b

′
1a
′
2b
′
2⋯a′nb′n ∈ A ∗ B is such that π(f) = π(g),

then a1⋯am = a′1⋯a′n and b1⋯bm = b′1⋯b′n. From  (2) of Lemma  3.9 we conclude
that π has finite fibers (in case a1 = 1A we apply the lemma with a2⋯am, and
analogously in the cases where some of a′1, bm, b′n are 1).

Now, if ∅ ≠ X ⊆ A ∗ B, then the set π(X) has a smallest element m0 by the
well-ordering on A×B. Since π−1({m0}) is finite, there is a smallest m ∈ π−1({m0}).
We claim m =min(X). Let f ∈X. If f />m, then f ≤m. Then π(f) ≤ π(m) =m0
by the order-preserving nature of π. By minimality of m0, therefore π(f) = π(m).
The minimality of m in the fiber shows f =m. □

For later use, we summarize the properties in the case most pertinent to us.
Theorem 3.12. Let X, Y be (possibly empty) sets. Then the monoid M ∶= [Y ]∗⟨X⟩
is strictly well-ordered, and the semirings

N0[M] and N0((M)).
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are strictly ordered. In particular, the products are cancellative, and fn = gn for
n ≥ 1 implies f = g.

Proof. The monoid M is well-ordered by Lemma  3.11 . Hence Propositions  3.7 

and  3.8 imply the remaining claims (note f , g > 0 for all nonzero elements of these
two semirings). □

3.1. From semirings to rings. Theorem  3.12 will be enough for our later applica-
tions. However, since rings are much better-studied objects in algebra as compared
to semirings, it is reasonable at this point to take a final small step and to pass
from semirings to rings.

To do so, we need to add negative elements, which will work because a graph
semiring S is always cancellative with respect to addition (the disjoint union of
graphs).

Let S be a semiring. A ring R is a ring of differences for S if there is a semiring
homomorphism j∶S → R such that every element of S has an additive inverse in
R, and such that R is universal with respect to that property. That is, if T is any
ring for which there is a semiring homomorphism f ∶S → T , then there exists a
ring homomorphism f ∶R → T such that f = f ○ j. Rings of differences are uniquely
determined up to unique isomorphism by this universal property.

Lemma 3.13. Every graph semiring S can be embedded into a ring of differences
D =D(S).

Proof. This is a consequence of the additive semigroup being cancellative [ 19 ,
Theorem II.5.11]. For the reader’s convenience, we sketch the (familiar) construction.
Let S be a graph semiring, so that (S,+, 0) is a cancellative monoid. On pairs
(m, n) ∈ S × S one defines an equivalence relation

(m, n) ≃ (m′, n′) ⇔ m + n′ =m′ + n.

This is a congruence relation with respect to the additive structure, and D ∶=
(S×S)/≃ is an additive group. There is an embedding of monoids j∶ (S,+) → (D,+),
m ↦ [(m, 0)]≃ and, identifying S with its image under this map, every element
x ∈D has the form x =m − n with m, n ∈ S. Defining on D a multiplication by

(m − n)(m′ − n′) ∶= (mm′ + nn′) − (mn′ + nm′),

turns D into a ring with sub-semiring S.
If T is a ring and f ∶S → T is a semiring homomorphism, then f ∶D → T

defined by f([(m, n)]≃) =m−n is a well-defined semiring homomorphism satisfying
f = f ○ j. □

Corollary 3.14. Let M be a graph semiring with ring of differences D(M), and
with the following properties.
(1) The connected graphs in M form a submonoid M0.
(2) Every graph in M has a finite number of connected components.
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Then
Z[M0] ≅D(M).

Proof. We know N0[M0] ≅ M from Proposition  3.2 . The monoid algebra Z[M0]

is easily seen to be the ring of differences of N0[M0], and hence the semiring
isomorphism N0[M0] ≅M extends to a ring isomorphism Z[M0] ≅D(M). □

Corollary 3.15. Let M be a graph semiring with ring of differences D(M), and
with the following properties.
(1) The connected graphs in M form a submonoid M0.
(2) No graph in M has infinitely many isomorphic connected components.
(3) The set M contains all (infinite) disjoint unions of elements of M0, subject to

the restriction  (2) .
(4) The monoid M0 is a strictly well-ordered monoid.
Then

Z((M0)) ≅D(M).

Proof. We know N0((M0)) ≅M from Proposition  3.6 . Since Z((M0)) is the ring of
differences of N0((M0)), the claim follows. □

Consider the modified rooted hierarchical product of finite graphs. The submonoid
of connected graphs is a free monoid on countably many generators. Hence the
associated monoid algebra is simply the free algebra Z⟨X⟩ in a countable set X,
where addition in the algebra corresponds to the disjoint union of graphs. If we allow
infinite graphs where each connected component is finite, and every component
appears at most finitely often up to isomorphism, we obtain the ring of formal
noncommutative power series in countably many indeterminates Z⟪X⟫.

For the generalized rooted hierarchical product
Z[[Y ] ∗ ⟨X⟩] ≅ Z[Y ] ∗Z Z⟨X⟩,

is a coproduct of a polynomial ring in countably many indeterminates and a free
algebra in countably many indeterminates. In the terminology of Cohn [ 11 ], this is
the free Z[Y ]-ringZ

Z[Y ]Z⟨X⟩.
on the set X. Allowing arbitrary sets X and Y (or at least permitting Y = ∅) we
recognize the rings of the modified rooted hierarchical product as a special case.

Before we summarize the pertinent information, let us recall that in ring theory
a domain is a non-zero ring in which ab = 0 implies a = 0 or b = 0.

Theorem 3.16. Let X, Y be (possibly empty) sets. Then the monoid M ∶= [Y ]∗⟨X⟩
is strictly well-ordered, and the rings

Z[M] ≅ Z[Y ] ∗Z Z⟨X⟩ and Z((M)).
are strictly ordered. In particular, they are domains, have the cancellation property,
and fn = gn with n ≥ 1 implies f = ±g.
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Proof. Almost everything follows as in Theorem  3.12 (noting that Z is strictly
ordered under the usual order). It only remains to check that fn = gn with n ≥ 1
implies f = ±g even if one (or both) of f , g are negative. If f and g are both
negative, we can replace them by −f and −g and get −f = −g from the positive case,
hence f = g. If f < 0 < g and fn = gn, then n must be even, and hence (−f)n = gn.
Thus f = −g.

For the cancellation property, we could invoke Proposition  3.8 , but it is also
well-known that a nonzero ring is a domain if and only if its nonzero elements are
cancellative. □

If X = 0, then Z[M] = Z[Y ] is a commutative polynomial ring in possibly
infinitely many variables (this case arises, for instance, for the Cartesian product
of finite graphs). In this case Z((Y )) = ZJY K is a commutative formal power series
ring.

If Y is infinite, the ring ZJY K is not the completion

Ẑ[Y ] ≅ lim
←Ð

Z[Y ]/In.

with respect to the ideal I generated by Y . Indeed, in the quotient Z[Y ]/In every
element has only finite support, even though Y is infinite. Therefore Ẑ[Y ] is the
subring of ZJY K consisting of those series whose support contains only finitely
many elements for every given total degree n.

Remark 3.17. (1) While rings are better understood than semirings, we do lose
some information about factorizations of graphs in passing to them. After
all, in a graph, there is no concept of a connected component with negative
multiplicity. However, allowing negative coefficients significantly alters the
factorization properties.

For a simple example, consider the semiring M of finite graphs under the
Cartesian product. Connected graphs factor uniquely into prime graphs,
so that M0 = [Y ] with Y the set of prime graphs. Thus M ≅ N0[Y ] and
D(M) ≅ Z[Y ], a polynomial ring in countably many variables. The ring Z[Y ]
is a unique factorization domain, but the semiring N0[Y ] does not have unique
factorizations. This observation was used in [ 15 ] to prove the unique root
property for finite Cartesian products, and corresponds to the well-known fact
that factorizations of disconnected graphs into prime graphs are not unique
with respect to the Cartesian product.

The study of factorizations in semirings has recently gained considerable
traction [ 1 ,  10 ,  12 ,  16 ,  17 ,  28 ]. In particular, the univariate polynomial semiring
N0[x] was recently studied by Cesarz, Chapman, McAdam and Schaeffer [ 9 ]
and by Campanini and Facchini [ 8 ]. This semiring is not even half-factorial,
that is, an element may have factorizations of different lengths. Even more, it
was shown that, for every rational r ≥ 1, there exists an f ∈ N0[x] such that the
ratio of the lengths of the longest to the shortest factorization of f is precisely
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r. Moreover, for every d ≥ 0, there exists some f ∈ N0[x] and l ≥ 1 such
that f has factorizations of lengths l and l + d, but no factorization of length
strictly between l and l + d. See [ 9 , Theorem 2.3] and the comment following it.
These results immediately imply corresponding ones for Cartesian products of
(disconnected) finite graphs. Motivated by the case of the Cartesian product,
it would be interesting to study the non-unique factorizations of N0[Y ] with
Y countable (or even finite and ∣Y ∣ ≥ 2) in more detail.

(2) For graph products in the classical sense of Imrich and Izbicki [ 25 ], which are
defined purely in terms of the adjacency relation (and therefore do not include
the various rooted products), it is known that only six products give rise to
(possibly non-unital) rings [ 7 , Theorem 2].

4. Applications to graph products

We now apply the main result, Theorem  3.16 , to graph products to show the
unique root property and the cancellation property, as defined below. We begin
with
1. The Generalized Rooted Hierarchical Product. By the previous sections
it is clear that the ring R = Z(([Y ] ∗ ⟨X⟩)) arising from the finite connected graphs
G[U], U ≠ ∅, that are prime with respect to the generalized rooted hierarchical
product satisfies the conditions of Theorem  3.16 . Hence, for any two elements
a, b ∈ R of the ring with non-negative coefficients, the equality an = bn, n ≥ 1,
implies that a = b. Furthermore, if a, b, c ∈ R, where a, b, c have only non-negative
coefficients, then either of the identities ca = cb or ac = bc implies that a = b (unless
c is empty), because R is a domain. We call the first property the unique root
property and the second the cancellation property.

Theorem 4.1. Finite and countably infinite graphs, where each connected com-
ponent is a finite graph with non-empty root set and finite multiplicity, have the
unique root property, and the cancellation property, with respect to the generalized
rooted hierarchical product.

Proof. Let A, B, C be finite or countably infinite graphs, where each connected
component is a finite graph with non-empty root set. Assume that every connected
component appears only finitely often up to isomorphism. Then A, B, C correspond
to elements a, b, c ∈ R, all of whose coefficients are non-negative. □

We now list other products and domains on which they have the unique root
and the cancellation property.
2. The Rooted Hierarchical Product. It has the unique root, and the
cancellation property, for finite and countably infinite graphs, where each connected
component is a finite rooted graph and each connected component has finite
multiplicity. Note that in this case the free abelian monoid Y in the characterization
of R as Z[Y ]Z⟨X⟩ is empty.
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3. The Cartesian Product. We introduced it as a special case of the generalized
hierarchical product. It thus clearly has the unique root and the cancellation
property for finite and countably infinite graphs, where each connected component
is finite with finite multiplicity. Here X is empty.

Let us remark that the definition of the Cartesian product extends to the class
of graphs with loops, which we denote by Γ0. By Boiko, Cuno, Imrich, Lehner, and
van de Woestijne [ 6 ] the unique prime factorization property holds for all finite
connected graphs in Γ0 that have at least one unlooped vertex. Hence, in Γ0 this
product has the unique root and cancellation property for finite and infinite graphs,
in which each connected component is finite, contains at least one unlooped vertex,
and has finite multiplicity. Here too, the set X is empty.

One can also extend the Cartesian product to hypergraphs. By Imrich [ 21 ]
connected hypergraphs have the unique prime factorization property, and dis-
tributivity with respect to the disjoint union of hypergraphs holds. Therefore,
countably infinite hypergraphs, where each connected component is finite with
finite multiplicity, also have the unique root and cancellation property. For a proof
in English of the unique prime factorization property for connected hypergraphs
we refer to Gringmann [ 18 ].
4. The Direct Product. We define this product on the class Γ0 of graphs in
which loops are allowed. Let G, H ∈ Γ0. Then the edges of the direct product
G ×H are all pairs of vertices (g, h)(g′, h′), where gg′ ∈ E(G) and hh′ ∈ E(H).
The product is commutative, and the one vertex graph with a loop is the neutral
element. Note that the direct product of loopless graphs is loopless too.

In general, prime factorization with respect to the direct products is not unique,
not even for connected graphs. However, it is unique for finite connected non-
bipartite graphs, where a graph is non-bipartite if it contains at least one cycle
of odd length (which can also be a loop). This follows from a general result of
McKenzie [ 32 ] about infinite relational structures. For a graph theoretic proof see
Imrich [ 24 ].

The unique prime factorization for products of finite connected non-bipartite
graphs implies that Theorem  4.1 also holds for the direct product of finite and
infinite graphs, if each connected component is finite and non-bipartite, and has
finite multiplicity.

For finite graphs in Γ0 we have the following theorem of Lovász [ 30 ].

Theorem 4.2. Let G, H ∈ Γ0. If Gn ≅ Hn, where powers are taken with respect
to the direct product, then G ≅ H. Furthermore, if A, B, C ∈ Γ0 and if there are
homomorphisms from A and B to C, then A ×C ≅ B ×C, implies A ≅ B.

Let us see how this compares with the results we can achieve. The indeterminates
in our rings are prime graphs and we need unique prime factorization.

This means that Lovász’ unique root result is stronger than ours for finite graphs,
but it does not cover infinite graphs.
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Also, our cancellation result only covers non-bipartite graphs, but for them it is
stronger.

5. The Strong Product. The strong product is defined in the class of graphs
without loops. For the strong product G ⊠H of graphs G, H one sets E(G ⊠H) =
E(G ◻H) ∪ E(G ×H). Again, the product is commutative, associative and K1
is the neutral element. Furthermore, as shown by Dörfler and Imrich [  14 ], each
connected finite graph has the unique prime factorization property with respect
to the strong product. This implies that all countably infinite graphs with finite
connected components, and each connected component appearing only finitely often
up to isomorphism, have the unique root and cancellation property. For infinite
graphs this is new, but for finite graphs it is also a consequence of Theorem  4.2 .

To see this, just observe that if one first adds loops to all vertices of graphs G,
H, then multiplies the resulting graphs with respect to direct product, and finally
removes all loops again, one obtains the strong product G⊠H. The strong product
can thus be considered as special case of the direct one. Moreover, since every
graph with a loop is non-bipartite, this is not a restriction for the strong product.
This observation already takes care of the unique root property. The cancellation
property follows, because there are always homomorphisms from A and B into C if
C has at least one loop; one simply maps A and B into such a vertex and its loop.

6. The Lexicographic Product. Given graphs G, H, two vertices (g, h), (g′, h′)
are adjacent in the lexicographic product G ○H if either gg′ ∈ E(G), or g = g′ and
hh′ ∈ E(H). It is non-commutative, associative and K1 is a unit. It is right-
distributive with respect to the disjoint union of graphs, but not left-distributive.
Hence our methods do not directly apply.

Nonetheless, by Imrich [ 23 ], finite graphs have the unique root and the cancella-
tion property with respect to the lexicographic product.

To extend at least part of this result to infinite graphs we observe that by [ 23 ]
prime factorization of finite connected graphs with respect to the lexicographic
product is unique for products of prime connected graphs without a Kn, n > 1,
as a factor. As a matter of curiosity, let us remark that, by [ 23 ], for any given
finite graph, the number of factors in any prime factorization with respect to the
lexicographic product is always the same, despite the fact that prime factorization
is in general not unique.

Moreover, by Imrich [ 22 ], two finite connected non-trivial graphs commute with
respect to the lexicographic product if and only if they are either both complete,
edgeless, or powers of one and the same graph.

We can thus consider the free monoid formed by the prime, connected graphs
that are not complete. However, due to the failure of left distributivity, we do not
obtain a semiring structure. To obtain left distributivity we introduce the modified
lexicographic product by letting it coincide with the lexicographic product for
connected graphs and by setting C ○ (⋃i≥1 Ai) = ⋃i≥1(C ○Ai) for disconnected ones
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with countably many connected components. Clearly the modified lexicographic
product also has the unique root property, as well as the cancellation property.

Example 4.3. When considering infinite graphs, we had to assume that each
connected component appears only finitely often up to isomorphism. This is because
on the semiring side, the connected components correspond to indeterminates, and
their multiplicity is recorded in the coefficient, which is an element of N0. Of course,
we could consider the semiring S = N0 ∪ {ℵ0,ℵ1, . . . , κ} of cardinal numbers (up to
some bound κ, to avoid set-theoretic issues) with cardinal arithmetic, and extend
our isomorphism result to S((M0)) ≅ M . However, the semiring S is no longer
strictly ordered (or even cancellative) and so neither is M .

This is not just a defect of our approach. To see how the cancellation property
and the unique root property can fail for associative graph products that are
distributive over infinite disjoint unions, let G be some connected finite graph,
and let G′ ∶= ℵ0G be a countable disjoint union of copies of G. Then clearly
ℵ0G +G = ℵ0G + nG for all finite n ≥ 0, so that additive cancellation fails (because
G ≠ nG if n ≠ 1).

Suppose now that Gn is connected for all n and that G is not trivial, so that
Gn ≠ Gm for m ≠ n (the powers are taking with respect to the graph product under
consideration). Fix a sequence (an)n≥2 of positive integers, and consider

H = ℵ0G + a2G
2 + a3G

3 +⋯,

Then
H2 = ℵ0G

2 + ℵ0G
3 + ℵ0G

4 +⋯,

independent of the sequence (an)n≥2. Thus the unique root property fails.
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