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Abstract. Locally acyclic cluster algebras are Krull domains. Hence their factorization theory is
determined by their (divisor) class group and the set of classes containing height-1 prime ideals.
Motivated by this, we investigate class groups of cluster algebras. We show that any cluster algebra
that is a Krull domain has a finitely generated free abelian class group, and that every class contains
infinitely many height-1 prime ideals. For a cluster algebra associated to an acyclic seed, we give
an explicit description of the class group in terms of the initial exchange matrix. As a corollary, we
reprove and extend a classification of factoriality for cluster algebras of Dynkin type. In the acyclic
case, we prove the sufficiency of necessary conditions for factoriality given by Geiss–Leclerc–Schröer.

Introduction and summary of results

Cluster algebras were introduced and studied in a series of articles by Fomin and Zelevinsky in
[FZ02 , FZ03 , FZ07 ] and by Berenstein–Fomin–Zelevinsky in [BFZ05 ]. They admit connections to
several branches of mathematics such as representation theory, geometry, and combinatorics. A
large number of articles in cluster theory study linear bases of cluster algebras. In most applications
however—for example in representation theory and in hyperbolic geometry—the multiplicative
structure is of prime importance. For this reason we study ring-theoretic properties of cluster
algebras, in particular those related to their factorization theory. The factorization theory of
cluster variables also plays a crucial role in the proof of a main theorem about cluster algebras,
Fomin–Zelevinsky’s Laurent phenomenon, see [FZ02 ]. Further, Goodearl–Yakimov use special
prime elements in their construction of quantum cluster algebra structures on quantum nilpotent
algebras in [GY17 ], and in a commutative setting in their construction of cluster algebra structures
on symmetric Poisson nilpotent algebras in [GY18 ].

Throughout the paper we consider cluster algebras of geometric type, allowing frozen variables.
However, we always assume that all frozen variables are invertible. The only exception to this is
Section 7 , where we discuss the case of non-invertible frozen variables.

A locally acyclic cluster algebra A is a noetherian integrally closed domain, and therefore a
Krull domain. Krull domains are classical objects in commutative algebra (see [Fos73 ]). They have
been one of the main objects of study in factorization theory. Thus, the factorization theory of a
Krull domain A is very well understood (see [GHK06 , Ger16 ]). It is governed by the (divisor) class
group C(A) and the subset of classes of C(A) containing height-1 prime ideals. In this paper we
investigate class groups of cluster algebras that are Krull domains. As a domain is factorial if and
only if it is a Krull domain with trivial class group, this constitutes a generalization of the study of
factoriality of cluster algebras.

Factoriality of cluster algebras has been investigated before by Geiss–Leclerc–Schröer in [GLS13 ],
who, in particular, have given necessary conditions for a cluster algebra to be factorial. Factoriality
in cluster algebras of Dynkin type A, D, E was classified in the (unpublished) preprint [Lam12 ] by
Lampe. The connection with Krull domains was first observed in [Lam14 ].
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The results in the present paper give a full description of the class group of an acyclic cluster
algebra in terms of its initial seed. Class groups of Dynkin types (and other important families of
acyclic seeds) are easily computed from these results; in particular, we recover the classification
of factoriality for Dynkin type A, D, E and extend it to all Dynkin types (see Corollary 5.16 ).
Cluster algebras with an acyclic seed and principal coefficients turn out to always be factorial (see
Corollary 5.3 ).

We show that the necessary condition for factoriality of Geiss–Leclerc–Schröer is sufficient for an
acyclic seed (see Theorem 5.1 ). For, not necessarily acyclic, cluster algebras that are Krull domains,
our first main result shows that their class group is always a finitely generated free abelian group.

Theorem A. Let Σ = (x,y, B) be a seed with exchangeable variables x = (x1, . . . , xn) and frozen
variables y = (xn+1, . . . , xn+m). Let A = A(Σ) be the cluster algebra associated to Σ, in which
we assume that all frozen variables are invertible. Suppose that A is a Krull domain, and let
t ∈ Z≥0 denote the number of height-1 prime ideals that contain one of the exchangeable variables
x1, . . . , xn. Then the class group of A is a free abelian group of rank t− n.

If n+m > 0, that is A 6= K, then each class contains exactly |K| height-1 prime ideals.

Since every locally acyclic cluster algebra is a Krull domain, the previous theorem is applicable
to them. The theorem also has a generalization allowing non-invertible frozen variables, see
Theorem 7.1 .

These results imply a strong dichotomy between the factorization theory of a factorial and a non-
factorial cluster algebra: in a non-factorial cluster algebra that is a Krull domain, all arithmetical
invariants are infinite and any finite subset L ⊆ Z≥2 can be realized as a set of lengths of some
element (see Corollary 3.6 ). We also give an example of a cluster algebra that is not a Krull domain
in Theorem 6.5 .

We now state a simplified version of our second main result on class groups of cluster algebras,
which allows us to determine the rank of the class group in the acyclic case. We restrict to the
base ring Z and assume that Σ does not have any isolated exchangeable indices; see Theorem 5.5 

for the general result. Before stating the theorem we need to introduce some notation.
Let B = (bij) denote a (n+m)×n integer matrix with skew-symmetrizable principal part. To B

we associate an ice quiver Γ(B) having set of vertices [1, n+m], with [n+ 1, n+m] frozen vertices.
When the principal part of B is skew-symmetric, Γ(B) coincides with the usual quiver associated
to B in cluster theory. The exchange matrix B is acyclic if the full exchangeable sub-quiver of Γ(B)
does not contain an oriented cycle. An index i ∈ [1, n] is isolated if i has no neighbors in Γ(B). We
write dj = gcd(bij | i ∈ [1, n+m]) for the greatest common divisor of the j-th column of B. Two
indices i, j ∈ [1, n] are partners if their exchange polynomials share a non-trivial common factor;
this can be expressed in terms of the exchange matrix B (see Definition 2.6 and the discussion
following it). Partnership is an equivalence relation on [1, n] and the equivalence classes are called
partner sets.

Theorem B (Special case of Theorem 5.5 ). Let Σ = (x,y, B) be an acyclic seed with exchangeable
variables x = (x1, . . . , xn) and frozen variables y = (xn+1, . . . , xn+m). Let A = A(Σ) be the cluster
algebra associated to Σ, with base ring Z and all frozen variables invertible. Assume that Σ does
not contain any isolated exchangeable indices. For a partner set V ⊆ [1, n] and d ∈ Z≥1, let c(V, d)
denote the number of i ∈ V for which d divides di.

Then, the class group of A is a finitely generated free abelian group of rank

r =
∑
V

∑
d∈Z≥1

d odd

(
2c(V,d) − 1)− |V |,

where the outer sum is taken over all partner sets V ⊆ [1, n].
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The main tools we rely on are the Laurent phenomenon for cluster algebras and Nagata’s
Theorem, describing the behavior of class groups of Krull domains under localization. In the case
of an acyclic seed, we use a presentation of the cluster algebra due to Berenstein–Fomin–Zelevinsky,
from [BFZ05 ], to determine the height-1 prime ideals containing one of the initial cluster variables.

The paper is organized as follows. In Section 1 we recall basic definitions and results on cluster
algebras arising from skew-symmetrizable matrices, on the multiplicative ideal theory of Krull
domains, as well as some notions from factorization theory. In Section 2 we study the factorization
properties of exchange polynomials and introduce the key notion of partner sets. Section 3 contains
our main result on cluster algebras that are Krull domains (Theorem A ). It also contains Subsection
3.3 , where we show that cluster variables in factorial cluster algebras give rise to irreducible
F -polynomials.

In Sections 4 and 5 we specialize to the case of acyclic seeds. In Section 4 we determine the
height-1 prime ideals containing one of the initial cluster variables. Using this, in Section 5 , we
determine the class group of a cluster algebra associated to an acyclic seed. The main theorems here
are Theorem 5.1 , Theorem 5.5 , and Corollary 5.16 ; we also give several easier to apply corollaries
and work out examples.

In Section 6 we show that the cluster algebra associated to the Markov quiver is not a Krull
domain. Section 7 contains partial generalizations of the main theorems to non-invertible frozen
variables. The final Section 8 contains some further questions to investigate.

1. Preliminaries

Throughout this article, let K be a field of characteristic zero, or K = Z. From the end of
Section 1.1 on throughout the remainder of the paper, if the base ring K is a field, we assume that
the underlying ice quiver Γ(B) of the exchange matrix B of our cluster algebra has no isolated
exchangeable vertices. This simplifies the statements of many results, without restricting their
generality. See Remark 1.13 below.

A domain is a nonzero unital commutative ring in which 0 is the only zero-divisor. For a domain
A we denote by A× its group of units, by A• = A \ {0} its monoid of nonzero elements, and by
q(A) its quotient field.

1.1. Cluster algebras. In this subsection we recall basic notions about cluster algebras of geometric
type, as introduced in the articles by Fomin–Zelevinsky [FZ02 , FZ03 , FZ07 ] and by Berenstein–
Fomin–Zelevinsky [BFZ05 ].

A good way to organize information about a cluster algebra is the notion of an ice quiver.
Through all this work, the quivers considered will be 2-acyclic. This means that there are no
oriented cycles of length one or two.

Definition 1.1 (Ice quivers).

(1) A quiver Q = (Q0, Q1) is a finite directed graph where Q0 is the set of vertices and Q1 the
set of arrows. There are maps s, t : Q1 → Q0 that indicate the source and the target of each
arrow, respectively.

(2) An ice quiver is a quiver Q = (Q0, Q1) together with a partition of the vertex set Q0 into
exchangeable and frozen vertices. We also assume that there are no arrows between two frozen
vertices.

The following notions will become helpful.

Definition 1.2 (Attributes of ice quivers). Let Q = (Q0, Q1) be an ice quiver.

(1) The exchangeable part of Q is the full subquiver on the set of exchangeable vertices.
(2) We say that Q is acyclic if the full subquiver on its exchangeable vertices does not contain any

oriented cycle.
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(3) Two arrows α 6= β in Q1 are called parallel if s(α) = s(β) and t(α) = t(β).
(4) Let i ∈ Q0. Elements in the set N−(i) = { j ∈ Q0 | ∃α : j → i in Q1 } are called predecessors,

elements in the set N+(i) = { j ∈ Q0 | ∃α : i→ j in Q1 } are called successors, and elements
in the set N(i) = N−(i) ∪N+(i) are called neighbors.

(5) A vertex i ∈ Q0 is called a sink if N+(i) = ∅ and it is called a source if N−(i) = ∅. It is called
isolated if N(i) = ∅.

Let Q = (Q0, Q1) be an ice quiver with exchangeable vertices [1, n] and frozen vertices [n+1, n+m].
With Q we associate an integer (n+m)× n matrix B = B(Q) = (bij) with entries

bij = |{α ∈ Q1 | s(α) = i and t(α) = j }| − |{α ∈ Q1 | s(α) = j and t(α) = i }| ∈ Z.

The n× n submatrix of an (n+m)× n matrix B supported on rows [1, n] is called the principal
part of B. Note that the principal part of B(Q) is skew-symmetric.

More generally, an n × n integer matrix B = (bij) is called skew-symmetrizable if there exist
positive integers d1, . . . , dn such that dibij = −djbji for all i, j ∈ [1, n]. We call an (n+m)× n
integer matrix with n, m ∈ Z≥0 and a skew-symmetrizable principal part an exchange matrix. Note
that for every exchange matrix B with skew-symmetric principal part there is exactly one ice quiver
Q with B(Q) = B with exchangeable vertices [1, n] and frozen vertices [n+ 1,m].

Remark 1.3. The notion of exchange matrices with a skew-symmetrizable principal part is more
general than that of ice quivers, however it can be described using weighted directed graphs (see
[FZ03 ]). We will not use this terminology. In this paper we will consider cluster algebras defined
in terms of exchange matrices with a skew-symmetrizable principal part. However, many of our
examples have skew-symmetric exchange matrices and can therefore be represented more nicely
using ice quivers.

Note that any skew-symmetrizable matrix is sign-skew-symmetric, that is, for any i, j ∈ [1, n]
either bij = bji = 0 or bijbji < 0.

We associate to an exchange matrix B the ice quiver Γ(B) in the following way. If bij > 0 we
have bij arrows from i to j. If i ∈ [n+ 1,m] is frozen and bij < 0 we also add −bij arrows from j
to i. Notice that in the case of matrices with skew-symmetric principal part, the exchange matrix
B and the ice quiver Γ(B) carry the same information and one can be easily recovered from the
other. That is, we can write B(Γ(B)) = B.

We apply the notions of predecessors, successors, neighbors, sources, and sinks to indices
i ∈ [1, n+m] by interpreting them in terms of Γ(B).

Exchange matrices are an important ingredient in the definition of seeds.

Definition 1.4 (Seeds). A seed is a triple Σ = (x,y, B) such that:

(1) x = (x1, . . . , xn) and y = (xn+1, . . . , xn+m), with n, m ≥ 0, are tuples consisting of altogether
n+m algebraically independent indeterminates over K; the set {x1, . . . , xn+m} is called the
cluster of Σ.

(2) The elements in x are called exchangeable variables; the elements in y are called frozen
variables.

(3) B is an exchange matrix with n+m rows and n columns.

Given a seed Σ, the field F = F(Σ) = q(K)(x1, . . . , xn+m) is called the associated ambient field.

We tacitly identify two seeds that arise from each other by a permutation of the exchangeable
and frozen variables and a matching permutation of the rows and columns of B.

Definition 1.5 (Acyclicity). A seed Σ = (x,y, B) (respectively, its exchange matrix B) is called
acyclic if the ice quiver Γ(B) is acyclic; that is, the full subquiver of Γ(B) on the exchangeable
vertices [1, n] does not contain any oriented cycles.
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Note that the ice quiver of an acyclic seed may still have cycles involving frozen vertices, as is
the case for the quiver in Example 2.8 .

Definition 1.6 (Principal coefficients). Let Σ = (x,y, B) be a seed. We say that Σ has principal
coefficients if n = m and the n× n submatrix of B formed by the last n rows is the identity.

We will consider the following polynomials.

Definition 1.7 (Exchange polynomials). Let Σ = (x,y, B) be a seed with x = (x1, . . . , xn) and
y = (xn+1, . . . , xn+m). Suppose that i ∈ [1, n] is an exchangeable index. The polynomial

fi =
∏

j∈[1,n+m]
bji>0

x
bji
j +

∏
j∈[1,n+m]
bji<0

x
−bji
j ∈ K[x,y]

is called the exchange polynomial of xi (with respect to the seed Σ).

A crucial notion is the mutation of a seed.

Definition 1.8 (Mutations of seeds). Let Σ = (x,y, B) be a seed with x = (x1, . . . , xn), with
y = (xn+1, . . . , xn+m), and with ambient field F . For every i ∈ [1, n], we define the mutation of Σ
in the direction i to be the seed µi(Σ) = (x′,y′, B′) given by

(1) x′ = (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) where x′i = fi

xi
∈ F(Σ);

(2) y′ = y;
(3) B′ = (b′kl) ∈ Mat(n+m)×n(Z) with

b′kl =

{
−bkl if k = i or l = i;

bkl + 1
2(|bki|bil + bki|bil|) otherwise.

It is easy to see that the mutation of a seed µi(Σ) is again a seed with the same number of
exchangeable and frozen variables and the same ambient field. Moreover, we have (µi ◦ µi)(Σ) = Σ
for all seeds Σ and all exchangeable indices i. Thus, mutation induces the following equivalence
relation.

Definition 1.9 (Mutation equivalence). Given a seed Σ = (x,y, B), its mutation class is the set
M(Σ) of all seeds which can be obtained from Σ by applying successive mutations:

M(Σ) = {µik ◦ · · · ◦ µi2 ◦ µi1(Σ) | k ≥ 0 and ir ∈ [1, n] for all r }.
Two seeds in the same mutation class are mutation-equivalent.

Denote by X the set of all exchangeable variables appearing in a seed in M(Σ). Now we are
ready to state the definition of a cluster algebra.

Definition 1.10 (Cluster algebras). Let Σ = (x,y, B) be a seed. The cluster algebra associated
to Σ is the K-algebra

A = A(Σ) = K[x, y | x ∈ X , y, y−1 ∈ y] ⊆ F(Σ).

The elements x ∈ X are called the cluster variables of A(Σ); the cluster variables in the initial seed
Σ are called initial cluster variables; the elements y ∈ y are called the frozen variables of A(Σ).

Note that some authors do not invert the frozen variables in the definition of a cluster algebra.
A cluster algebra is acyclic if it has an acyclic seed Σ; however this does not imply that every seed
of A is acyclic.

There are several theorems in the literature that are helpful for us. Fomin–Zelevinsky’s Laurent
phenomenon [FZ02 ] asserts that A(x,y, B) ⊆ K[u±1 | u ∈ x ∪ y]; the finite type classification
[FZ03 ] describes cluster algebras with only finitely many cluster variables by finite type root systems.
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Even if a cluster algebra admits infinitely many cluster variables it may be finitely generated as a
K-algebra. More precisely, if the initial exchange matrix B is acyclic, then the cluster algebra admits
a nice presentation by finitely many generators and relations due to Berenstein–Fomin–Zelevinsky
[BFZ05 ].

Theorem 1.11 (Berenstein–Fomin–Zelevinsky). Let Σ = (x,y, B) be a seed whose exchange
matrix B ∈ Matm+n,n(Z) is acyclic. Let x = (x1, . . . , xn), let y = (xn+1, . . . , xn+m), and let fi
with i ∈ [1, n] be the exchange polynomials. Let Xi, X

′
i for i ∈ [1, n], and Xj for j ∈ [n+ 1, n+m]

denote algebraically independent indeterminates over K. Then the assignments

Xi 7→ xi (i ∈ [1, n]), X ′i 7→ µi(Σ)i (i ∈ [1, n]), Xj 7→ xj (j ∈ [n+ 1, n+m])

induce an isomorphism of algebras

K
[
Xi, X

′
i, X

±1
j

∣∣ i ∈ [1, n], j ∈ [n+ 1, n+m]
]
/〈XiX

′
i − fi(X1, . . . , Xn+m) | i ∈ [1, n]〉 → A(Σ).

See [BFZ05 , Corollary 1.21] for the previous result. It follows from [BFZ05 , Corollary 1.17], by
which the lower bound of a cluster algebra with acyclic seed has a presentation as given above, and
[BFZ05 , Theorem 1.20], by which the lower bound of a cluster algebra with acyclic seed coincides
with the cluster algebra itself. We remark that the proof in [BFZ05 ] concerns the case K = Z, but
the isomorphism holds for K a field of characteristic 0 through base extension, as every field of
characteristic 0 is flat as Z-algebra.

In particular, we note that the cluster algebra A(Σ) is finitely generated and noetherian when
Σ is acyclic. It is also known that A(Σ) is integrally closed in this case, since it coincides with
its upper cluster algebra (see [Mul14 ]), which is integrally closed as an intersection of Laurent
polynomial rings.

The presentation in Theorem 1.11 also implies that, for an acyclic seed, the algebra obtained by
inverting a subset of the initial cluster variables is isomorphic to the cluster algebra obtained by
freezing the corresponding variables. This will be a crucial ingredient for our inductive arguments
in Section 4 .

Remark 1.12. Presentations of lower bound cluster algebras have been studied by Muller–Rajchgot–
Zykoski in [MRZ18 ]. Locally acyclic cluster algebras, introduced by Muller in [Mul13 ], are also
finitely generated, noetherian, and integrally closed. These algebras are known to coincide with their
upper bound algebras (see [Mul14 ]), presentations of which have been studied by Matherne–Muller
in [MM15 ].

Remark 1.13. Let Σ = (x,y, B) be a seed with x = (x1, . . . , xn) and y = (xn+1, . . . , xn+m), and
let A = A(Σ). If K is a field and i ∈ [1, n] is isolated, then xix

′
i = 2 implies that xi is a unit in A.

Thus, if we freeze i, we obtain an algebra isomorphic to the original one. Hence, if K is a field, we
may without restriction assume that [1, n] has no isolated exchangeable indices. This assumption
ensures that our exchange polynomials are always non-units in the polynomial ring K[x,y].

From now on for the rest of the paper, unless otherwise stated, if K is a field, we assume without
restriction that a seed has no isolated exchangeable indices. This will simplify the statement of
many results, without restricting their generality in any way.

1.2. Krull domains. In this section, we summarize some basic properties of Krull domains, with
a focus on their multiplicative ideal theory. Our main references are [Fos73 , GHK06 ]. While in
[GHK06 ] the theory of Krull monoids is developed, this encompasses Krull domains well. (A
domain A is a Krull domain if and only if A• is a Krull monoid.)

Let A be a domain and q(A) its quotient field.
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A fractional ideal is an A-submodule a ⊆ q(A) such that there exists an x ∈ q(A)× with xa ⊆ A.
For a fractional ideal a we define

a−1 = (A : a) = {x ∈ q(A) | xa ⊆ A } and av = (a−1)−1.

A fractional ideal a is divisorial if a = av; it is invertible if there exists a fractional ideal b such that
ab = A. Not every fractional ideal is invertible, but if a is invertible, then a−1 as defined above is
indeed the unique fractional ideal such that aa−1 = A. In this case av = a, so that every invertible
ideal is divisorial. Every principal fractional ideal xA with x ∈ q(A)× is invertible with inverse
x−1A. In particular, principal fractional ideals are divisorial.

The divisorial closure satisfies that (av)v = a, that (xA)v = xA for all x ∈ q(A)×, and that
(ab)v = (avb)v = (avbv)v for all fractional ideals a, b. Moreover, if a ⊆ b, then av ⊆ bv.

The domain A is v-noetherian (or a Mori domain) if it satisfies the ascending chain condition on
divisorial ideals.

An element x ∈ q(A) is almost integral (over A) if there exists c ∈ q(A)× such that cxn ∈ A for
all n ≥ 0. We say that A is completely integrally closed if every almost integral element x ∈ q(A)
belongs to A. A noetherian domain is completely integrally closed if and only if it is integrally
closed.

Definition 1.14 (Krull domain). A Krull domain is a domain A that is v-noetherian and completely
integrally closed.

In particular, a noetherian domain is a Krull domain if and only if it is integrally closed. Thus,
(locally) acyclic cluster algebras are Krull domains.

Let A be a Krull domain. The following statements are equivalent for an ideal p of A:

(a) p is a height-1 prime ideal.
(b) p is a nonzero divisorial prime ideal.
(c) p is a maximal divisorial ideal (if A is not equal to its quotient field).

We write X(A) for the set of height-1 prime ideals and keep the following important property in
mind.

Lemma 1.15. If A is a Krull domain and a ∈ A•, then the set { p ∈ X(A) | a ∈ p } is finite.

Let Iv(A) denote the set of all divisorial ideals of A, let Fv(A) denote the set of all divisorial
fractional ideals, Iv(A)• the set of nonzero divisorial ideals, and Fv(A)× the set of nonzero divisorial
fractional ideals. On Fv(A) we can define an associative operation by a ·v b := (ab)v. The ideal A
is a neutral element for this operation, so that Fv(A) is a monoid. For fractional ideals a1, . . . , ak
we define the notation

k∏
v

i=1

ai =
( k∏
i=1

ai

)
v
.

By convention an empty product is equal to the trivial ideal A, and in particular a0 = (a0)v = A.

Theorem 1.16. If A is a Krull domain, then (Fv(A)×, ·v) is a free abelian group with basis X(A).
Thus, every a ∈ Fv(A)× has a representation as divisorial product

a =
∏

v

p∈X(A)

pnp .

with uniquely determined np ∈ Z, almost all of which are 0. We have a ∈ Iv(A)• if and only if
np ≥ 0 for all p ∈ X(A).

Proof. This follows from [Fos73 , Corollary 3.14]. Alternatively, this is shown in the more general
setting of Krull monoids in [GHK06 , Theorem 2.3.11]. See [GHK06 , Chapter 2.10] for the connection
between the monoid and the domain case. �
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For a ∈ Fv(A)× we define the p-adic valuation of a as vp(a) = np with np as in the previous
theorem. For a, b ∈ Iv(A)•, we have a ⊆ b if and only if vp(a) ≥ vp(b) for all p ∈ X(A).

Since every principal fractional ideal xA (with x ∈ q(A)×) is divisorial and (xA) ·v (yA) = xyA,
the nonzero principal fractional ideals H(A) = {xA | x ∈ q(A)× } ⊆ Fv(A)× form a subgroup.

Definition 1.17 (Class group). Let A be a Krull domain. The (divisor) class group of A is
C(A) = Fv(A)×/H(A). We use additive notation for C(A). If a ∈ Fv(A)×, we denote by [a] its
class in C(A).

An ideal a ∈ Iv(A) is principal if and only if [a] = 0. The class group C(A) and the subset
G0 = { [p] ∈ C(A) | p ∈ X(A) } of classes containing (divisorial, nonzero) prime ideals play a crucial
role in the study of the arithmetic of A•.

Denote by Spec(A) the set of all prime ideals of A. For an overring A ⊆ B and an ideal a ⊆ A,
we write aB = 〈a〉B for the extension of a to B. Recall the following correspondence.

Proposition 1.18. Let A be a domain and S ⊆ A• a multiplicatively closed set. There is an
inclusion-preserving bijection

{ p ∈ Spec(A) | p ∩ S = ∅ } → Spec(S−1A),

p 7→ S−1p = p(S−1A),

q ∩A←[ q.

Since the bijection is inclusion-preserving, it preserves the height of any prime ideal p of A with
p ∩ S = ∅. If A is a Krull domain and S ⊆ A• is a multiplicatively closed set, then the localization
S−1A is a Krull domain as well. If a ∈ Fv(A), then S−1a ∈ Fv(S−1A) and the following is a monoid
homomorphism

jS : (Fv(A), ·v)→ (Fv(S−1A), ·v), a 7→ S−1a.

Moreover, X(S−1A) is in bijection with { p ∈ X(A) | p ∩ S = ∅ }. If a ∈ Fv(A)×, then

S−1a =
∏

v

p∈X(A)

(S−1p)vp(a) =
∏

v

p∈X(A)
p∩S=∅

(S−1p)vp(a).

The divisorial product here is now taken in the ring S−1A. Thus, the factorization of S−1a arises
from the one of a by simply replacing every prime ideal p having p ∩ S = ∅ by S−1p and omitting
all prime ideals that intersect S non-trivially.

This idea will be useful for computing vp(a) for divisorial ideals a of cluster algebras: localizing
by a cluster, we always get a Laurent polynomial ring, which is factorial, and easier to work in. In
this localization, we only lose the prime ideals containing a variable of the given cluster. To figure
out the exponents of these primes, we may localize by a different cluster.

The following theorem on the behavior of class groups under localization will be a key tool in
this approach.

Theorem 1.19 (Nagata’s Theorem, [Fos73 , §7]). Let A be a Krull domain and S ⊆ A• a multi-
plicative set. Then jS induces an epimorphism jS : C(A)→ C(S−1A), and ker(jS) is generated by
the classes of those p ∈ X(A) with p ∩ S 6= ∅.

In particular, if S is generated by prime elements, then jS is an isomorphism. From this, one
can deduce the following corollary.

Corollary 1.20. Let A be a domain and S ⊆ A• a multiplicative set generated by prime elements.
Then A is factorial if and only if S−1A is.
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1.3. Factorizations. We recall some basic notions from factorization theory. Let A be a domain.
A non-unit u ∈ A• is an atom if u = ab with a, b ∈ A• implies a ∈ A× or b ∈ A×. A non-unit
p ∈ A• is a prime element if p | ab with a, b ∈ A• implies p | a or p | b; equivalently, the principal
ideal pA is a prime ideal in A. Every prime element is an atom, but the converse is false in general.

Two elements a, b ∈ A• are associates if there exists a unit ε ∈ A× such that a = bε; equivalently
aA = bA. The domain A is atomic if every non-unit a ∈ A• is a product of atoms; it is factorial if
every non-unit a ∈ A• is a product of prime elements. In the latter case, the factorization of a into
prime elements is unique up to order and associativity of the factors. Factorial domains are often
also called unique factorization domains, or UFDs in short.

Every v-noetherian domain, and hence every Krull domain, is atomic. The following theorem
shows the fundamental connection between factorial and Krull domains.

Theorem 1.21. Let A be a domain. The following statements are equivalent.

(a) A is factorial.
(b) A is atomic and every atom of A is a prime element.
(c) A is a Krull domain and C(A) is trivial.

Proof. The equivalence (a)⇔(b) is elementary, see [GHK06 , Theorem 1.1.10].
The equivalence (a)⇔(c) follows from [Fos73 , Proposition 6.1]. Alternatively, this is shown in the

more general setting of (commutative, cancellative) monoids in [GHK06 , Corollary 2.3.13]. Again,
see [GHK06 , Chapter 2.10] for the connection between monoids and domains. �

For cluster algebras, Geiss–Leclerc–Schröer have shown the following.

Theorem 1.22 ([GLS13 ]). Let Σ = (x,y, B) be a seed, x = (x1, . . . , xn), and y = (xn+1, . . . , xn+m).
Let A = A(Σ).

(a) Any cluster variable is an atom.
(b) The group of units of A is

A× = K× × 〈x±1
j | j ∈ [n+ 1, n+m]〉.

Together with Nagata’s Theorem, this implies a characterization of factorial cluster algebras,
first observed by Lampe in [Lam14 ].

Corollary 1.23. Let Σ = (x,y, B) be a seed with x = (x1, . . . , xn) and y = (xn+1, . . . , xn+m), and
let A = A(Σ). Then the following statements are equivalent.

(a) A is factorial,
(b) every cluster variable is a prime element,
(c) every exchangeable variable x1, . . . , xn of the seed Σ is a prime element.

Proof. (a)⇒ (b): By Theorem 1.22 every cluster variable is an atom. Since A is factorial, every
atom is a prime element.

(b)⇒ (c): Clear.
(c)⇒ (a): By the Laurent phenomenon, the localization A[x−1

1 , . . . , x−1
n ] is a Laurent polynomial

ring over the factorial ring K, and hence itself factorial. The claim follows from Nagata’s Theorem,
in the form of Corollary 1.20 . �

2. Exchange polynomials and partners

In this section we introduce the notion of partners, based on exchange polynomials having
non-trivial common factors. The concept of partners will play a central role in the computation of
the class group of cluster algebras with an acyclic seed.
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2.1. Exchange polynomials. Before defining partners, we take a closer look at the factorization
of exchange polynomials. For d ≥ 1, we denote by µd(K) the group of d-th roots of unity in K,
and by µ∗d(K) the set of primitive d-th roots of unity. Let Q denote an algebraic closure of Q. We
denote by

Φd(x, y) =
∏

ζ∈µ∗d(Q)

(x− ζy) ∈ Z[x, y],

the homogenized d-th cyclotomic polynomial. Recall that Φd(x, y), respectively the cyclotomic
polynomial Φd(x, 1), is irreducible over Z and hence also over Q. Over a given field K, the
polynomial Φd(x, y) will either remain irreducible (if µ∗d(K) = ∅), or split into a product of ϕ(d)
linear factors (if µ∗d(K) 6= ∅); here ϕ(d) = |(Z/dZ)×| denotes Euler’s totient function.

A theorem of Ostrowski, [Ost76 , Theorem IX], characterizes the absolute irreducibility of the
exchange polynomials. We need to make a few additional observations, and for this purpose restate
the proof in full.

Lemma 2.1. Let D be a domain of characteristic 0 and let D[x1, . . . , xk] be a polynomial ring. Let

f = xu11 · · ·x
uk
k + xv11 · · ·x

vk
k ∈ D[x1, . . . , xk] \D with uivi = 0 for all i ∈ [1, k].

Set d = gcd(u1, . . . , uk, v1, . . . , vk), so that f = gd + hd with monomials g, h ∈ D[x1, . . . , xk] having
disjoint support. Then the map

D[x1]→ D[x1, . . . , xk], r 7→ hdeg(r)r(g/h)

induces a bijection between factors of xd1 + 1 and factors of f . In particular,

(1) all factors of f ∈ D[x1, . . . , xk] are contained in D[g, h];
(2) the factorization of f into irreducible polynomials does not have any repeated factors;
(3) If D = K is an algebraically closed field, then

gd + hd =
g2d − h2d

gd − hd
=

∏
ζ∈µ2d(K)\µd(K)

(g − ζh),

with g − ζh irreducible in K[x1, . . . , xk].
(4) Suppose that D = Z or D = Q. If d = 2lc with l ≥ 0 and c odd, then

gd + hd =
∏
e|2d
e-d

Φe(g, h) =
∏
e|c

Φ2l+1e(g, h),

with Φe(g, h) irreducible in D[x1, . . . , xk].

Proof. [Ost76 , Theorem IX] asserts that f is absolutely irreducible if and only if d = 1. We follow
Ostrowski’s proof to obtain our slightly more refined claim. Since f and xd1 + 1 clearly do not have
any non-trivial monomial factors, we may instead consider their factorizations in the the Laurent
polynomial rings D[x±1

1 , . . . , x±1
k ], respectively D[x±1

1 ]. Here f is associated to

h−df =
k∏
j=1

x
uj−vj
j + 1.

Set a1j = (uj − vj)/d for j ∈ [1, k]. Since gcd(a1j , . . . , akj) = 1, we can find aij ∈ Z for i ∈ [2, k]
and j ∈ [1, k] such that the matrix (aij) is invertible over Z. This induces an automorphism α of

D[x±1
1 , . . . , x±1

k ] with

α(xi) =
k∏
j=1

x
aij
j .
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Noting that α(xd1 + 1) = h−df , and that all factors of xd1 + 1 clearly lie in D[x±1
1 ], the claim about

the bijection between factors follows.
The remaining claims are immediate consequences of this together with the corresponding well

known statements about xd1 + 1. �

Definition 2.2 (Column-gcd). Let Σ = (x,y, B) be a seed with x = (x1, . . . , xn) and y =
(xn+1, . . . , xn+m). For i ∈ [1, n], let

di = gcd( bji | j ∈ [1, n+m] ) ∈ Z≥0

denote the greatest common divisor of the i-th column of the exchange matrix.

The characterization in (2)(c) in the following proposition also appears in [BFZ05 , Lemma 3.1].

Proposition 2.3. Let Σ = (x,y, B) be a seed with x = (x1, . . . , xn) and y = (xn+1, . . . , xn+m).

(1) The exchange polynomials associated with Σ have no repeated factors.
(2) For non-constant exchange polynomials fi and fj with i, j ∈ [1, n], the following statements

are equivalent.
(a) fi and fj have a non-trivial common factor;

(b) fi = gdi + hdi and fj = gdj + hdj with monomials g, h ∈ K[x,y] having disjoint support,
at least one of which is non-trivial, and v2(di) = v2(dj).

(c) There exist odd di, dj ∈ Z such that djbki = dibkj for all k ∈ [1, n+m].

In this case, let l = v2(di) = v2(dj) and let c = gcd(di, dj)/2
l be the greatest common divisor of

the odd parts of di and dj. Then

g2lc + h2lc ∈ Z[x,y]

is a greatest common divisor of fi and fj.
(3) Having a non-trivial common factor is an equivalence relation on the set of exchange polynomials
{f1, . . . , fn}.

(4) For K an algebraically closed field, a non-constant exchange polynomial fi is irreducible if and
only if di = 1.

(5) For K = Z or K = Q, a non-constant exchange polynomial fi is irreducible if and only if di is
a power of 2.

Proof. (1) If the exchange polynomial fi is constant, then i is an isolated vertex and we assumed
this was not the case when K is a field. Thus, if fi is constant, then K = Z and fi = 2, where the
claim is clear. If fi is non-constant, the claim follows from (2) of Lemma 2.1 .

(2) (a) ⇒ (b) We may without restriction assume that K is an algebraically closed field. For
k ∈ {i, j} write the exchange polynomial fk as

fk = gdkk + hdkk with gk, hk ∈ K[x,y] monomials with disjoint support.

Using (3) of Lemma 2.1 , any irreducible factor of fk is asssociate to

gk − ζkhk
for some ζk ∈ µ2dk(K) \ µdk(K). Observe that v2(ord(ζk)) = v2(dk) + 1, and hence that ord(ζk)
determines v2(dk).

Now assume that fi and fj share a non-trivial common factor h. Without restriction we may
assume that that h is irreducible. Possibly replacing h by an associate,

h = gi − ζihi = λ(gj − ζjhj)
with λ ∈ K×, with ζi ∈ µ2di(K) \ µdi(K), and with ζj ∈ µ2dj (K) \ µdj (K). We must have

{gi, hi} = {gj , hj}. Moreover, either λ = 1, or otherwise λ = −ζ−1
j . In either case, it follows that

v2(di) = v2(dj) since ord(ζi) = ord(ζj) = ord(ζ−1
j ).
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(b)⇒ (c) Let l = v2(di) = v2(dj). Setting di = di/2
l and dj = dj/2

l, we have either djbki = dibkj
for all k ∈ [1, n+m] or djbki = −dibkj for all k ∈ [1, n+m].

(c)⇒ (a) If di, dj ∈ Z are odd integers such that djbki = dibkj for all k ∈ [1, n+m], then the
odd integers d′i = di/ gcd(di, dj) and d′j = dj/ gcd(di, dj) satisfy the same relations again. Hence

without loss of generality we may assume gcd(di, dj) = 1. Then bki/di for k ∈ [1, n + m] is an
integer and we can write

fi =
( ∏
k∈[1,n+m]
bki>0

x
bki/di
k

)di
+
( ∏
k∈[1,n+m]
bki<0

x
−bki/di
k

)di
.

Because di is odd, this implies that∏
k∈[1,n+m]
bki>0

x
bki/di
k +

∏
k∈[1,n+m]
bki<0

x
−bki/di
k

is a divisor of fi. Using bki/di = bkj/dj , we see that fj has the same divisor.
Finally, that the stated polynomial is a greatest common divisor of fi and fj follows from (4) of

Lemma 2.1 .
(3) Reflexivity and symmetry are clear. The only constant exchange polynomial that can appear

is 2. For non-constant exchange polynomials, the transitivity follows from (2)(c).
(4) By Lemma 2.1 .
(5) By (4) of Lemma 2.1 . �

As non-constant exchange polynomials are primitive, a non-constant exchange polynomial is a
prime element of K[x,y] if and only if it is an irreducible polynomial.

Corollary 2.4. Let Q be an acyclic ice quiver without parallel arrows. Then every exchange
polynomial of the seed Σ = (x,y, Q) is a prime element in K[x,y].

Proof. If i ∈ [1, n] is an isolated vertex and K = Z, then fi = 2 is a prime element. If K is a field,
our standing assumption is that Q does not contain any isolated vertices. Hence, in any other case,

fi =
∏

j∈N−(i)

xj +
∏

j∈N+(i)

xj

is a non-constant polynomial with di = 1. Hence fi is irreducible by (4) of Proposition 2.3 . �

Corollary 2.5. Suppose that the seed Σ = (x,y, Q) has principal coefficients. Then every exchange
polynomial is a prime element in K[x,y] and two distinct exchange polynomials are coprime.

Proof. By construction we have di = 1 for all i ∈ [1, n], hence every fi is irreducible by (4) of
Proposition 2.3 . Moreover, for i 6= j there do not exist odd di, dj ∈ Z such that djbki = dibkj
for all k ∈ [1, n + m], hence fi and fj do not have a non-trivial common factor by (2) (c) of
Proposition 2.3 . �

Since irreducible factors of non-constant exchange polynomials correspond to irreducible factors
of xd + 1 for some d ≥ 1, it is now easy to count the number of irreducible factors in an exchange
polynomial. For instance, if K is an algebraically closed field, then xd + 1 splits into linear factors,
and therefore has exactly d irreducible factors. On the other hand, if K = Z or K = Q, and d = 2lc
with l ≥ 0 and c odd, then the irreducible factors of xd + 1 are in bijection with the divisors of
c. Hence, xd + 1 is a product of σ0(c) irreducible polynomials, where σ0(c) denotes the number
of positive divisors of c ∈ Z>0. For other fields of characteristic 0, the number of factors can be
determined in terms of the primitive roots of unity contained in K.
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Since a greatest common divisor of two exchange polynomials has a similar form as the exchange
polynomials themselves, the discussion in the previous paragraph applies to the counting of common
irreducible factors of two or more exchange polynomials as well. Thus, the counting of (common)
irreducible factors of two or more exchange polynomials boils down entirely to elementary divisibility
properties of the di and knowledge about which roots of unity are contained in K. We come back
to this in Section 5 , where this information leads us directly to the determination of the rank of
the class group of a cluster algebra with acyclic seed.

2.2. Partner sets. Fix a seed Σ = (x,y, B) with x = (x1, . . . , xn) and y = (xn+1, . . . , xn+m). Let
A be the cluster algebra A(Σ).

Definition 2.6 (Partners).

(1) Two exchangeable indices i, j ∈ [1, n] are partners if the exchange polynomials fi and fj have
a non-trivial common factor in K[x,y]. Partnership is an equivalence relation on the set of
exchangeable indices by Proposition 2.3 . An equivalence class is called a partner set.

(2) Let g ∈ K[x,y] be a non-unit. An exchangeable index i ∈ [1, n] is called a g-partner (or a
gK[x,y]-partner) if the corresponding exchange polynomial fi is divisible by g. The set of
g-partners is

P (g) = P (gK[x,y]) = { i ∈ [1, n] | i is a g-partner }.

It is convenient to define the set of g-partners in terms of the principal ideal gK[x,y]: if
gK[x,y] = g′K[x,y], then P (g) = P (g′).

If i, j ∈ [1, n] are both g-partners for some g, then trivially they are also partners. By our
discussion on exchange polynomials, Proposition 2.3 , the partner relation between exchangeable
indices can be described entirely in terms of the exchange matrix B. Specifically, for i ∈ [1, n], let
b∗i denote the i-th column of the exchange matrix B and di the greatest common divisor of its
entries. By (2) (c) of Proposition 2.3 , two non-isolated exchangeable indices i and j are partners if
and only if v2(di) = v2(dj) and b∗i/di = ±b∗j/dj . Isolated vertices (which we only allow in the case
K = Z) are always partners, since their exchange polynomial is the constant 2.

If two indices i and j are partners, then

• either N−(i) = N−(j) and N+(i) = N+(j) hold, or N−(i) = N+(j) and N+(i) = N−(j) hold;
in short

{N−(i), N+(i)} = {N−(j), N+(j)},

and
• we have v2(di) = v2(dj).

In particular, we have N(i) = N(j) for partners i, j.
If the exchange polynomials are all prime elements, then i, j are partners if and only if fi = fj .

This is the case when B = B(Q) for Q an ice quiver without parallel arrows. In that case, also di ∈
{0, 1} for all i ∈ [1, n]. Thus, i and j are partners if and only if {N−(i), N+(i)} = {N−(j), N+(j)}.

Lemma 2.7. Two partners are never neighbors of each other.

Proof. Let i, j ∈ [1, n] be partners and suppose they were neighbors. Then j ∈ N(i) = N(j),
contradicting that Γ(B) has no loops. �

Example 2.8. Consider the following ice quiver, where the frozen vertices are boxed. The number
over an arrow indicates that there are that many parallel arrows. Let A be the cluster algebra over
Q defined by B(Q).
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2 7 6

9 3 1 10

4 8 5
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The exchange polynomials in this case are:

f1 = x3
2x3x4x6 + x5x

6
7x

2
8x10 ; f2 = x3

9 + x3
1 ; f3 = x2

9 + x1 ; f4 = x9 + x1

f5 = f6 = x1 + x10 ; f7 = x6
1 + 1 ; f8 = x2

1 + 1.

So f2 and f4 have the irreducible factor x9 + x1 in common. The polynomials f7 and f8 share the
factor x2

1 +1. The partner sets are P (x1 +x9) = {2, 4}, P (x1 +x10) = {5, 6}, and P (x2
1 +1) = {7, 8},

plus the unitary sets {1} and {3}.

For every exchangeable index i ∈ [1, n] we denote by x′i the cluster variable obtained by mutation
of Σ in direction i. Equivalently, x′i is the generator in Berenstein–Fomin–Zelevinsky’s presentation
of A(Σ).

Lemma 2.9. Suppose that i1, . . . , ir ∈ [1, n] are partners in Σ with corresponding cluster variables
xi1, . . . , xir . Then (µis ◦ µit)(Σ) = (µit ◦ µis)(Σ) for all s, t ∈ [1, r]. In particular, the seed
(µir ◦ · · · ◦ µi1)(Σ) contains the cluster variables x′i1, . . . , x′ir .

Proof. The claim follows from a more general statement, compare Fomin–Williams–Zelevinsky
in [FWZ16 , Exercise 2.7.7]: If two indices i, j ∈ [1, n] are not neighbors of each other, then
µi ◦ µj = µj ◦ µi. �

Remark 2.10. A result of Caldero and Keller (see [CK06 , Corollary 4]) asserts that if two ice

quivers Q and Q̃ are acyclic and the two seeds (x,y, B(Q)) and (x̃, ỹ, B(Q̃)) are mutation-equivalent,

then Q and Q̃ are related by a sequence of mutations at sinks or sources. These mutations do not
change the underlying undirected diagram of the quiver. The theorem of Caldero–Keller implies
that for every k ∈ Z>0 the number of partner sets of size k in Q is equal to the number of partner

sets of size k in Q̃.

3. Class groups

In this section we prove our first main theorem, Theorem A . The results in this section apply to
all cluster algebras that are Krull domains. We show that a cluster algebra that is a Krull domain
always has a finitely generated free abelian class group, with rank determined by the number
of height-1 primes over the exchangeable variables of a fixed cluster. This proves a conjecture
of Lampe, who, in [Lam14 ], conjectured that the class group of every acyclic cluster algebra is
torsion-free. Moreover, we establish that every class contains infinitely many height-1 primes.

3.1. Class groups in Krull domains. To begin with, we work in a slightly more general setting.

Theorem 3.1. Let A be a Krull domain, and let x1, . . . , xn ∈ A be elements such that the
localization A[x−1

1 , . . . , x−1
n ] = D[x±1

1 , . . . , x±1
n ] is a Laurent polynomial ring in the indeterminates

x1, . . . , xn over some factorial subring D ⊆ A. Let p1, . . . , pt be the pairwise distinct height-1
prime ideals of A containing one of the elements x1, . . . , xn. Suppose that

xiA =
t∏
v

j=1

p
aij
j

with ai = (aij)
t
j=1 ∈ Zt≥0. Then C(A) ∼= Zt/〈ai | i ∈ [1, n]〉.
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Proof. Let H ⊆ C(A) denote the subgroup of C(A) generated by the classes of height-1 prime ideals
that contain one of x1, . . . , xn. In other words, H is generated by [p1], . . . , [pt]. Nagata’s Theorem
implies that there is a short exact sequence

0 −→ H −→ C(A) −→ C(A[x−1
1 , . . . , x−1

n ]) −→ 0.

By assumption we have C(A[x−1
1 , . . . , x−1

n ]) = C(D[x±1
1 , . . . , x±1

n ]) ∼= C(D) = 0. It follows that
H ∼= C(A) and thus, in particular, that C(A) is generated by [p1], . . . , [pt].

Now suppose that there are integers mj ∈ Z with j ∈ [1, t] such that
∑t

j=1mj [pj ] = 0 in C(A).
Then the corresponding divisorial product of height-1 prime ideals is principal, that is, there exists
an element f ∈ q(A) such that

fA =
t∏
v

j=1

p
mj

j . (1)

Localization at the multiplicative set S generated by x1, . . . , xn yields

fA[x−1
1 , . . . , x−1

n ] =

t∏
v

j=1
pj∩S=∅

(S−1pj)
mj = A[x−1

1 , . . . , x−1
n ].

Hence f lies inA[x−1
1 , . . . , x−1

n ]× = D[x±1
1 , . . . , x±1

n ]×. SinceD[x±1
1 , . . . , x±1

n ] is a Laurent polynomial
ring over D, we may thus write f = λxr11 x

r2
2 · · ·xrnn with some λ ∈ D× ⊆ A× and integers ri ∈ Z.

Substituting the factorizations of xiA as divisorial products of height-1 primes, we obtain

fA =
n∏
v

i=1

( t∏
v

j=1

p
aij
j

)ri
=

t∏
v

j=1

p
∑n

i=1 riaij
j . (2)

A comparison of Equations (1 ) and (2 ) yields mj =
∑n

i=1 riaij for all j ∈ [1, t]. In other words
m = (mj)

t
j=1 =

∑n
i=1 riai. This implies m ∈ 〈ai | i ∈ [1, n]〉 ⊆ Zt which finishes the proof of the

theorem. �

In the next proof we use that every Krull domain possesses the approximation property : Let p1,
. . . , pt be pairwise distinct height-1 prime ideals and e1, . . . , et ∈ Z. Then there exists a ∈ K×
such that vpj (a) = ej for j ∈ [1, t] and vp(a) ≥ 0 for every other height-1 prime ideal p. See [Fos73 ,
Theorem 5.8] or [GHK06 , Definition 2.5.3 and Corollary 2.10.10].

Theorem 3.2. We keep the assumptions of Theorem 3.1 and moreover assume that D is an infinite
domain, and that either n ≥ 2, or n = 1 and D has at least |D| height-1 prime ideals. Then every
class of C(A) contains precisely |D| height-1 prime ideals.

Proof. We first show the following claim.

Claim A. For every j ∈ [1, t], let ej ∈ Z≥0. Then there exist at least |D| height-1 prime ideals

q ⊆ A with [q] =
∑t

j=1−ej [pj ].

Proof. By the approximation property there exists an element a ∈ A such that vpj (a) = ej for all
j ∈ [1, t].

Write

a =

s∑
i=r

xi1ai

with r ≤ s, with ai ∈ D[x±1
2 , . . . , x±1

n ], with ar 6= 0, and with as 6= 0. Let p ∈ D[x2, . . . , xn] be a

prime element with p 6∈ pj for all j ∈ [1, t] and such that p does not divide ar in D[x±1
2 , . . . , x±1

n ]. By
our assumptions on D and n, there exist at least |D| pairwise non-associated such prime elements.



16 ANA GARCIA ELSENER, PHILIPP LAMPE, AND DANIEL SMERTNIG

Choose N ∈ Z>0 such that N > ej for all j ∈ [1, t] and N > s. Consider

b = (x1 · · ·xn)N + pa ∈ A.

Then vpj (b) = vpj (a) = ej for all j ∈ [1, t]. By the Eisenstein criterion, x−r1 b is irreducible as

a polynomial in x1 over D[x±1
2 , . . . , x±1

n ]. Since its leading coefficient, (x2 · · ·xn)N , is a unit in

D[x±1
2 , . . . , x±1

n ], it also does not have any non-unit constant factor. We conclude that b is a prime

element of D[x±1
1 , . . . , x±1

n ] = A[x−1
1 , . . . , x−1

n ].
Thus, by Proposition 1.18 ,

bA = q ·v
t∏
v

j=1

p
ej
j

with a height-1 prime ideal q of A that does not contain any of x1, . . . , xn, and [q] = −
∑t

j=1 ej [pj ].

Varying the choice of p, we find at least |D| different such ideals. � (Claim A)

Let now g ∈ C(A) be an arbitrary class. Then

g =
t∑

j=1

cj [pj ] with cj ∈ Z for j ∈ [1, t]. (3)

Considering some xlA with xl ∈ pj , we have

[pj ] = alj [pj ]− (alj − 1)[pj ] =
t∑

k=1
k 6=j

−alk[pk]− (alj − 1)[pj ].

Thus, if cj > 0, we can replace [pj ] by a negative linear combination of [pk]’s. Hence, without
restriction, we can assume cj ≤ 0 for all j ∈ [1, t] in Equation (3 ). Therefore there exist at least
|D| height-1 prime ideals q in A with [q] = g by Claim A.

Noting that |A| = |D[x1, . . . , xn]| = |D|, and that in a Krull domain every height-1 prime ideal is
finitely generated as a divisorial ideal, it is clear that A has at most |D| height-1 prime ideals. �

3.2. Class groups for cluster algebras. In this subsection we apply the previous results in the
particular case where the Krull domain A is also a cluster algebra.

Lemma 3.3. Let Σ = (x,y, B) be a seed with x = (x1, . . . , xn), and A = A(Σ). Suppose that A
is a Krull domain. Then, for each i ∈ [1, n], there exists a height-1 prime ideal p ⊆ A such that
vp(xi) = 1 and vp(xj) = 0 for j ∈ [1, n] \ {i}.

Proof. We mutate Σ in direction i to obtain a new seed x′ in which xi is replaced by x′i. Since
xi is not contained in the support of the exchange polynomial fi, we have fi ∈ K[x′,y]. Let
A′ = A[u−1 | u ∈ x′ ∪ y]. Let p ∈ K[x′,y] be a prime factor of fi and set p = pA′ ∩ A. By
Krull’s Principal Ideal Theorem, the prime ideal pA′ has height 1, and therefore so does p. For
j ∈ [1, n] \ {i} we have xj ∈ (A′)×, and therefore xj 6∈ p. Hence vp(xj) = 0. Because fi does not
have any repeated factors, we have vp(xi) = vp(fi) = 1. �

We can now prove the first main theorem of the paper.

Proof of Theorem A . We apply Theorem 3.1 to the cluster algebra A and the set {x1, . . . , xn+m}.
In this situation A[x−1

1 , . . . , x−1
n ] = A[x−1

1 , . . . , x−1
n+m] is equal to the Laurent polynomial ring

K[x±1
1 , . . . , x±1

n+m], which is factorial. Thus, we know that C(A) is generated by t elements, with
n relations stemming from x1, . . . , xn (the frozen variables xn+1, . . . , xn+m are units in A and
hence not contained in any prime ideal; the relations they give are trivial). Let a = (aij)i∈[1,n],j∈[1,t]
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denote the matrix of relations, as in Theorem 3.1 , omitting the zero rows obtained from the frozen
variables.

By Lemma 3.3 , for each row i ∈ [1, n] of a we can find an index j ∈ [1, t] with aij = 1 and akj = 0
for k ∈ [1, n] \ {i}. This implies that we can use the i-th row to eliminate the j-th generator. The
additional property that akj = 0 for k ∈ [1, n] \ {i}, implies that any other cluster variable will
allow us to eliminate a different generator. Thus, we find that C(A) is a free abelian group of rank
t− n.

If n+m ≥ 2, or n+m = 1 and K = Z, we can apply Theorem 3.2 to obtain that every class
contains exactly |K| height-1 prime ideals. Suppose that n + m = 1 and that K is a field. By
our standing assumption, there is no isolated exchangeable index, so that necessarily n = 0 and
m = 1. But then A = K[x±1

1 ] is a Laurent polynomial ring, C(A) = 0, and A contains |K| pairwise
non-associated prime elements. �

For many cases, the result that every class of C(A) contains infinitely many height-1 prime ideals
(but not the exact cardinality) can also be deduced from a more general theorem by Kainrath; see
[Kai99a , Theorem 3].

Remark 3.4. Suppose that, in addition to the assumptions of the previous theorem, A is a finitely
generated algebra with a known presentation. Then there are algorithms to compute the primary
decompositions of the ideals x1A, . . . , xnA. The associated primes are the height-1 prime ideals
containing one of the xi.

Thus, in this case, the previous theorem immediately gives rise to an algorithm for computing the
rank of the class group. A presentation of the class group, with generators the classes of height-1
primes containing one of the xi, can be obtained in the same way, as the entire coefficient matrix
(aij) appearing in Theorem 3.1 can be obtained from the primary decomposition.

Remark 3.5. A Krull monoid H is characterized, up to isomorphism, by its unit group H×, its
class group C(H), and a family of cardinalities (mg)g∈C(A), where mg is the cardinality of height-1
prime ideals of H in the class g.

Suppose that A is a cluster algebra that is a Krull domain. Then our results imply that the
multiplicative monoid A• is determined up to isomorphism by the class group C(A), the base ring
K, and the number of frozen variables m.

In [GLS13 ], Geiss–Leclerc–Schröer show a stronger result for factorial cluster algebras, implying
that many factorial cluster algebras are in fact polynomial rings.

The factorization theory of a Krull domain A is essentially determined by its class group G = C(A)
and the subset G0 = { g ∈ C(A) | g contains a height-1 prime ideal }. In particular any question
about sets of lengths is completely determined by these two invariants. We refer to [Ger16 ] for a
recent survey. If G0 = G is infinite, all arithmetical invariants of A are known to be infinite as well,
whereas for factorial domains all these invariants are trivial. Thus Theorem A exhibits a strong
dichotomy between the factorization theory of factorial and non-factorial cluster algebra (as long
as the latter is still a Krull domain).

We mention one particular striking result. Let a ∈ A•. We call k ≥ 0 a length of a if there exist
atoms u1, . . . , uk ∈ A• such that a = u1 · · ·uk. The set of lengths of a, denoted by L(a), is defined
as the set of all such lengths; we set L(a) = {0} for a ∈ A×. Then L(a) = {0} if and only if a is a
unit, and L(a) = {1} if and only if a is an atom. In any other case 0, 1 6∈ L(a). Recall that in a
Krull domain L(a) is always a finite set. Clearly, if A is factorial, then L(a) is a singleton for each
a ∈ A•. By contrast, a result of Kainrath from [Kai99b ], together with Theorem A , immediately
implies the following.

Corollary 3.6. Let A be a cluster algebra that is a Krull domain and suppose that A is not
factorial. Let L ⊆ Z≥2 be a finite set. Then there exists an element a ∈ A• such that L(a) = L.
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A further refinement of this result, that also deals with the multiplicities of the lengths appearing,
can be found in [GHK06 , Theorem 7.4.1].

3.3. F -polynomials. Suppose that the seed Σ = (x,y, B) has principal coefficients, and let
A = A(Σ). For the remainder of this section, we will suppose that A(Σ) is factorial. We will see
later that this assumption is always fulfilled when B is acyclic, see Corollary 5.3 .

Cluster algebras were widely studied given their interplay with quiver representations and
2-Calabi–Yau categories. The connection is given by the Caldero–Chapoton map, that sends
objects in the 2-CY category to elements in the cluster algebra. In that setting, it is important to
understand the behavior of F -polynomials.

Definition 3.7 (F -polynomial). Let A be a cluster algebra with principal coefficients, and z ∈ A
a non-initial cluster variable. The F -polynomial associated to z, that we denote by Fz, is obtained
from z ∈ K[x±1,y] by substituting x1 = . . . = xn = 1.

Proposition 3.8. Let z ∈ A be a non-initial cluster variable. According to the Laurent phenomenon
we may write z = r/s with coprime r, s ∈ K[x,y] such that s is a monomial. Then, the element
r ∈ K[x,y] is a prime element and not associated to any xi for i ∈ [1, n+m].

Proof. Recall first that, by [GLS13 , Corollary 2.3 (ii)] two different cluster variables z1, z2 ∈ A are
not associates. This implies in particular that r (and z) are not associated to any of x1, . . . , xn+m.
We have that z is a prime element in A by Corollary 1.23 . By Proposition 1.18 , the element z
remains prime in the localization K[x±1,y±1] hence it is prime in K[x±1,y]. As s is a unit in
K[x±1,y], the element r is prime in K[x±1,y]. We conclude that r is prime in K[x,y] unless it is
divisible by some xi with i ∈ [1, n].

Let i ∈ [1, n]. If xi divides s, then it does not divide r in K[x,y] by coprimality. Suppose now
that xi does not divide s, but that it does divide r in K[x,y]. Then xi divides r = zs also in A.
Since s is a monomial in x1, . . . , xn, and the initial cluster variables are prime elements in A, we
conclude that xi also does not divide s in A. Since xi is prime in A, then xi divides z in A, and
hence xi and z are associates. However, then xi = z, contradicting that z is a non-initial cluster
variable. We conclude that xi does not divide r. �

Theorem 3.9. Let A = A(Σ) be a factorial cluster algebra with principal coefficients. Let z be a
non-initial cluster variable and let Fz be the associated F -polynomial. Then Fz is a prime element
of K[y].

Proof. A result of Fomin–Zelevinsky, see [FZ07 , Proposition 5.2], asserts that Fz ∈ K[y] is not
divisible by a monomial. Hence Fz is a prime element in K[y] if and only if it is prime in K[y±1].
To show the latter, we show that Fz is a prime element in K[x±1,y±1].

We put ŷj = xj+n
∏n
i=1 x

bij
i for j ∈ [1, n]. The algebra endomorphism α of K[x±1,y±1] satisfying

α(xi) = xi for i ∈ [1, n] and α(xj+n) = ŷj for j ∈ [1, n]

is an automorphism with α−1(xj+n) = xj+n
∏n
i=1 x

−bij
i for j ∈ [1, n]. Hence Fz is prime if and

only if α(Fz) = F (ŷ1, . . . , ŷn) is prime in K[x±1,y±1]. By [FZ07 , Corollary 6.3], there is a Laurent
monomial M ∈ K[x±1,y±1]× such that zM is equal to Fz(ŷ1, . . . , ŷn). As noted before, z is prime
in A and it is not associated to any of x1, . . . , xn+m. By Proposition 1.18 the element z remains
prime in the localization K[x±1,y±1], and hence zM is prime in K[x±1,y±1] as well. �

4. Prime ideals in acyclic cluster algebras

Throughout this section let Σ = (x,y, B) be an acyclic seed with x = (x1, . . . , xn) and y =
(xn+1, . . . , xn+m), and let A = A(Σ) be the associated cluster algebra. For every xi with i ∈ [1, n],
we denote by x′i the cluster variable obtained by mutation of Σ in direction i.
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Recall that the assumption of acyclicity implies that A is a noetherian Krull domain. In this
section we carry out the strategy suggested by Theorem A , and explicitly determine the height-1
prime ideals containing one of the exchangeable variables x1, . . . , xn. The notions of partners and
p-partners, introduced in Section 2.2 , play a crucial role in this. In our main result of this section,
Theorem 4.9 , we determine the factorization of xiA as a divisorial product of height-1 prime ideals.

Lemma 4.1 (Muller). If two i, j ∈ [1, n] are neighbors, then the corresponding cluster variables xi
and xj do not lie in a common prime ideal p ⊆ A.

Proof. The lemma and the proof we present are due to Muller [Mul13 , Lemma 5.3]. We reproduce
the proof for the convenience of the reader. Suppose that there is a prime ideal p ⊆ A that contains
two exchangeable variables xi and xj such that there is an arrow i→ j in Γ(B). Let i1 = i and
i2 = j, and consider paths i1 → i2 → . . .→ ir in Γ(B) such that is is exchangeable and xis ∈ p for
all s ∈ [1, r]. Since Σ is acyclic, there exists such a path of maximal length r. By assumption r ≥ 2.
We have ∏

t∈N+(ir)

x
btir
t = xirx

′
ir −

∏
t∈N−(ir)

x
−btir
t ∈ p

because xir−1 , xir ∈ p and ir−1 ∈ N−(ir). Since p does not contain 1, we can deduce that N+(ir) is
non-empty. Since p is prime, there is a t ∈ N+(ir) with xt ∈ p. This t cannot be frozen, because
otherwise xtx

−1
t = 1 ∈ p. Hence it is exchangeable, which contradicts the maximality of the chosen

path. �

Nevertheless cluster variables corresponding to non-neighboring vertices can lie in a common
prime ideal, as the next example shows.

Example 4.2. Let Q = (1 → 2 ← 3) be of type A3 and let x = (x1, x2, x3). According to
Theorem 1.11 the cluster algebra A of Q is generated by xi, x

′
i with i ∈ [1, 3] subject to relations

x1x
′
1 = x2 + 1 = x3x

′
3 and x2x

′
2 = 1 + x1x3. Then the ideal p = 〈x1, x3〉 ⊆ A is prime because

A/p ∼= K[x′1, x2, x
′
2, x
′
3]/〈x2 + 1, x2x

′
2 − 1〉 ∼= K[x′1, x

′
3] is a domain.

We shall be concerned with the following ideals. Note that if p, q ∈ K[x,y] are prime elements
that are not associated to any of x1, . . . , xn+m, then p and q are associates in K[x,y] if and only
if they are associates in K[x±1,y±1] if and only if they are associates in A. Thus, P (p) = P (q) for
the set of p-partners if pA = qA. Hence the notation ppA(I) in the following definition makes sense.

Definition 4.3 (Prime ideals).

(1) For every partner set V ⊆ [1, n] and every subset I ⊆ V , let

AI = A
[
(x′i)

−1, x−1
j | i ∈ I, j ∈ [1, n] \ I

]
.

(2) For every prime element p ∈ K[x,y] that is not associated to any of x1, . . . , xn+m, and every
subset I ⊆ P (p) of the set of p-partners, define

pp(I) = ppK[x,y](I) = ppA(I) = A ∩ pAI .

By Lemma 2.9 , the set {x′i, xj | i ∈ I, j ∈ [1, n+m] \ I } is a cluster of A, so the ring obtained
by localizing with respect to the multiplicative set generated by the cluster, that is AI , is a Laurent
polynomial ring.

Let us summarize some basic properties of the ideals pp(I).

Proposition 4.4. Let p, q ∈ K[x,y] be prime elements not associated to any of x1, . . . , xn+m,
and let I ⊆ P (p) and J ⊆ P (q).

(1) The ideal pp(I) is a height-1 prime ideal of A.
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(2) The prime ideal pp(I) contains

{ p, xi, x′j | i ∈ I, j ∈ P (p) \ I }.

(3) We have pp(I) = pq(J) if and only if pA = qA and I = J .

Proof. (1) Since p is a prime element in K[x,y] and p is not divided by any of x1, . . . , xn+m by
assumption, the element p is also a prime element of AI . By Krull’s Principal Ideal Theorem, the
prime ideal pAI has height 1. Since AI is a localization of A, therefore the same is true for the
contraction pp(I) = A ∩ pAI .

(2) That p ∈ pp(I) is clear from the definitions.
Let i ∈ I. Since p divides the exchange polynomial fi, we have

xix
′
i = fi ∈ pA ⊆ pp(I),

and hence xi ∈ pp(I) or x′i ∈ pp(I). The latter is impossible, since x′i ∈ A
×
I

while p 6∈ A×
I

, hence

xi ∈ pp(I).
For j ∈ P (p) \ I we argue analogously x′j ∈ pp(I), since xj ∈ A×I .

(3) If pA = qA and I = J , then trivially pp(I) = pq(J).
Suppose now pp(I) = pq(J). We have q ∈ pp(I) and hence q ∈ pAI . Since p and q are prime

elements in AI , we conclude that they are associated. Since neither of them is divisible by a
monomial, we have p = qλ with λ ∈ K×. In particular, pA = qA.

Assume that I 6= J . Then there exists an element j ∈ J \ I or an element i ∈ I \ J . By
symmetry, we may without loss of generality assume that there is an element j ∈ J \ I. Then
x′j ∈ pp(I) and x′j ∈ A

×
J

. From this we can deduce that pp(I)AJ = AJ . On the other hand we have

pp(J)AJ = pAJ 6= AJ because p is not a unit in AJ . It follows that pp(I) 6= pq(J). �

The brunt of the work now lies in showing that the prime ideals just introduced are indeed
precisely the height-1 prime ideals containing some exchangeable variable x1, . . . , xn.

Lemma 4.5. Let i ∈ [1, n]. Every height-1 prime ideal of A containing xi is equal to some pp(I),
where p ∈ K[x,y] is a prime element dividing the exchange polynomial fi, and I ⊆ P (p) is a subset
with i ∈ I.

Proof. We prove the claim by induction on the number of pairwise non-associated prime elements
of K[x,y] that divide one of the exchange polynomials f1, . . . , fn. That is, by induction on

c = |{P ∈ X(K[x,y]) | fi ∈ P for some i ∈ [1, n] }|.
If c = 0, then n = 0 and there is nothing to show. Suppose from now on c ≥ 1 and that the claim
has been established for c− 1.

Without restriction we show the claim for x1. By (2) of Proposition 4.4 , each of the stated ideals
pp(I) contains x1. It therefore suffices to show that x1 is not contained in any other height-1 prime
ideal.

If i is a neighbor of 1, then x1 and xi are not contained in a common prime ideal of A by
Lemma 4.1 . Thus, if S ⊆ A• denotes the multiplicative subset generated by {xi | i ∈ N(1) }, it
suffices to show that x1 is not contained in any height-1 prime ideal of S−1A, other than an ideal
of the form S−1pp(I) with p and I as above. Since A is acyclic, Theorem 1.11 implies that A is

generated by {xi, x′i, x
±1
j | i ∈ [1, n], j ∈ [n + 1, n + m] } as a K-algebra. Therefore, the algebra

S−1A is isomorphic to the cluster algebra obtained by freezing the variables xi for i ∈ N(1) ∩ [1, n].
Moreover S−1pp(I) = S−1A ∩ pAI by Proposition 1.18 . Replacing A by S−1A, we may without
restriction assume that all neighbors of 1 are frozen. This implies in particular that fi ∈ K[y]
for all partners i of 1. Moreover, if i is a partner of 1, then xi does not occur in any exchange
polynomial of Σ.
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Let now p ⊆ A be a height-1 prime ideal containing x1. Then p also contains the exchange
polynomial f1 = x1x

′
1, and hence p contains a prime element p ∈ K[y] dividing f1. For each

i ∈ P (p), we have that p divides xix
′
i and hence xi ∈ p or x′i ∈ p. Let I = { i ∈ P (p) | xi ∈ p } and

note 1 ∈ I. Let a = 〈xi, x′j , p | i ∈ I, j ∈ P (p) \ I〉A. Then a ⊆ p by construction, and a ⊆ pp(I) by

(2) of Proposition 4.4 . We will show a = pp(I). Then pp(I) ⊆ p, and, since pp(I) and p are both
height-1 prime ideals, we can conclude p = pp(I).

We may without restriction assume P (p) = [1, r] for r ≥ 1. Consider the exchange matrix B′

obtained from B by erasing the first r columns and r rows. Note that the first r rows of B are in
fact all 0. Let x′ = (xr+1, . . . , xn), let Σ′ = (x′,y, B′), and let A′ be the cluster algebra associated
to Σ′. Again using that A is generated by {xi, x′i, x

±1
j | i ∈ [1, n], j ∈ [n+1, n+m] } as a K-algebra,

as well as the analogous statement for A′, we see that A′ is a subalgebra of A and

A = A′
[
xi, x

′
i | i ∈ [1, r]

]
.

Using the presentation of A given by Berenstein–Fomin–Zelevinsky in Theorem 1.11 ,

A = A′
[
xi, x

′
i | i ∈ [1, r]

] ∼= A′
[
Xi, X

′
i | i ∈ [1, r]

]
/〈XiX

′
i − fi | i ∈ [1, r]〉, (4)

for indeterminates X1, . . . , Xr, X
′
1, . . . , X ′r that are algebraically independent over A′.

As we have removed all p-partners, the element p is not a divisor of an exchange polynomial of
A′, and the induction hypothesis therefore applies to A′.

Claim. p is a prime element in A′.

Proof. The prime element p ∈ K[y] is not a monomial, hence p is a prime element in the Laurent
polynomial ring K[x±1

r+1, . . . , x
±1
n+m] = A′[x−1

r+1, . . . , x
−1
n ]. Thus

q = pA′
[
x−1
r+1, . . . , x

−1
n ]

is a height-1 prime ideal in A′[x−1
r+1, . . . , x

−1
n ]. Since A′ is a Krull domain, the ideal pA′ can be

written as a divisorial product of height-1 primes of A′. Proposition 1.18 implies

pA′ = (q ∩A′) ·v
t∏
v

s=1

qs

for some height-1 prime ideals qs ⊆ A′ (with t ≥ 0 and s ∈ [1, t]) such that qs contains one of xr+1,
. . . , xn. To show that p is a prime element in A′, it will suffice to show that t = 0.

Applying the induction hypothesis to A′, we see that any prime ideal qs containing one of xr+1,
. . . , xn is of the form

qs = A′ ∩ qA′
J

for a prime element q ∈ K[x′,y] dividing one of the exchange polynomials of Σ′, and ∅ 6= J ⊆ P (q),
where the q-partners P (q) are considered in A′, that is P (q) ⊆ [r + 1, n]. Here,

A′
J

= A′
[
(x′j)

−1, x−1
i | j ∈ J, i ∈ [r + 1, n] \ J

]
.

To show p 6∈ qs, it suffices to show p 6∈ qA′
J
. Suppose to the contrary that p ∈ qA′

J
. Since

p ∈ K[y] is a prime element in A′
J
, it follows that p = λq for some λ ∈ (A′

J
)×. But the group of

units is the multiplicative abelian group generated as

(A′
J
)× =

〈
µ, x′j , xi | µ ∈ K×, j ∈ J, i ∈ [r + 1, n+m] \ J

〉
Z .

It follows that λ ∈ K× and thus p and q are associated in K[x,y]. This is impossible, in contradiction
to the assumption p ∈ qA′

J
. � (Claim)
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From Equation (4 ) we see that

A/a ∼= (A′/pA′)[x′i, xj | i ∈ I, j ∈ P (p) \ I]

is isomorphic to a polynomial ring over the domain A′/pA′. Thus, the ideal a is a prime ideal in A.
Since pp(I) is a height-1 prime ideal containing a, we must have a = pp(I). �

Corollary 4.6. If i, j ∈ [1, n] are not partners, then there does not exist a height-1 prime ideal
p ⊆ A such that {xi, xj} ⊆ p.

Proof. This follows from Lemma 4.5 together with (3) of Proposition 4.4 . �

In the proof of Lemma 4.5 , if all exchange polynomials fi are contained in K[y], and thus in
particular if there is only one partner set, the localization step becomes unnecessary. In this case,
we see pp(I) = 〈xi, x′j , p | i ∈ I, j ∈ P (p)\I〉A. In general, when Σ admits more than one partner

set, we can show that pp(I) is generated by the same set as a divisorial ideal.

Proposition 4.7. Let p ∈ K[x,y] be a prime element dividing one of the exchange polynomials of
the seed Σ. Let ∅ 6= I ⊆ P (p). Then

pp(I) =
(
〈xi, x′j , p | i ∈ I, j ∈ P (p) \ I〉A

)
v
.

Proof. Let a =
(
〈xi, x′j , p | i ∈ I, j ∈ P (p) \ I〉A

)
v
. Since a is a divisorial ideal and A is a Krull

domain, the ideal a is a divisorial product of height-1 prime ideals. Our assumption that I 6= ∅
implies that there exists an i ∈ P (p) such that xi ∈ a. Denoting as always by fi the exchange
polynomial of xi, let fi = p1 · · · pr with prime elements p = p1, p2, . . . , pr ∈ K[x,y]. By (1) of
Proposition 2.3 , these prime elements are pairwise non-associated. Lemma 4.5 implies

a =

r∏
v

s=1

∏
v

∅6=J⊆P (ps)

pps(J)ks,J with ks,J ≥ 0.

Localizing, we have

aAJ =
r∏
v

s=1
J⊆P (ps)

(pps(J)AJ)ks,J .

for all j ∈ [1, r] and ∅ 6= J ⊆ P (pj).
On the other hand, from the definition of a and AI , we see aAI = pp(I)AI and aAJ = AJ for

∅ 6= J ⊆ P (p) with I 6= J . If pj is not associated to p and ∅ 6= J ⊆ P (pj), then p is a prime element
in AJ with pjAJ 6= pAJ . Hence pAJ 6⊆ pjAJ . Comparing coefficients, we find k1,I = 1 and kj,J = 0
for all other coefficients. Thus a = pp(I). �

Question 4.8. We know that {xi, x′j , p | i ∈ I, j ∈ P (p) \ I } generates pp(I) as a divisorial ideal,

and that, if all exchange polynomials are contained in K[y], the same set generates pp(I) as an
ideal. Is it always the case that pp(I) is generated by this set as an ideal?

Theorem 4.9. Let Σ = (x,y, B) be an acyclic seed with x = (x1, . . . , xn) and y = (xn+1, . . . , xn+m),
and let A = A(Σ). For every exchangeable index i ∈ [1, n] the following equation holds.

xiA =
∏

v

P∈X(K[x,y])
fi∈P

∏
v

I⊆P (P)
i∈I

pP(I)

Proof. We proceed in the same way as in the proof of Proposition 4.7 . By (1) of Proposition 2.3 ,
we can write fi = p1 · · · pr with pairwise non-associated prime elements pj ∈ K[x,y].
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By Lemma 4.5 , we have

xiA =
r∏
v

s=1

∏
v

I⊆P (ps)
i∈I

pps(I)ks,I with ks,I ≥ 0.

Localizing, for j ∈ [1, r] and I ⊆ P (pj) with i ∈ I,

xiAI = fiAI =
r∏
s=1

psAI .

Since ppj (I)AI = pjAI , a comparison of coefficients gives kj,I = 1. �

5. Class groups of acyclic cluster algebras

We keep the notation of the previous section: let Σ = (x,y, B) be an acyclic seed with
x = (x1, . . . , xn) and y = (xn+1, . . . , xn+m), and let A = A(Σ) be the associated cluster algebra.

In this section we combine Theorem A with the description of height-1 prime ideals over the
exchangeable variables x1, . . . , xn, obtained in the previous section, to determine the rank of the
class group in the acyclic case in terms of the initial exchange polynomials, and hence in terms of
the initial exchange matrix B together with knowledge about roots of unity in the base ring K.
When B is skew-symmetric, and thus arising from an ice quiver Q, the resulting description is in
terms of quiver combinatorics. This yields a particularly explicit description in the cases where K
is one of Z, Q, or an algebraically closed field.

We then give some easier to state special cases of this theorem, and apply it to several examples.
In particular, we recover all known results on class groups of cluster algebras and the classification
of factoriality for cluster algebras of (extended) Dynkin type.

Geiss–Leclerc–Schröer in [GLS13 ] give necessary conditions for a cluster algebra to be factorial.
For an acyclic seed, we can now show that these conditions are also sufficient. (For seeds where
Γ(B) contains an oriented cycle the conditions are not sufficient, as the example of a cluster algebra
of type A3 represented by a cycle easily shows.)

Theorem 5.1. Let A be a cluster algebra with acyclic seed Σ. Then the following statements are
equivalent.

(a) A is factorial.
(b) The exchange polynomials f1, . . . , fn are prime elements in K[x,y] and pairwise distinct.

Proof. By Theorem A the algebra A is factorial if and only if each of x1, . . . , xn is contained in a
unique height-1 prime ideal. The claim therefore follows from Lemma 4.5 . �

Corollary 5.2. Let Q be an acyclic ice quiver without parallel arrows. Then the cluster algebra
A = A(Q) is factorial if and only if every partner set V in Q is a singleton. In other words, Q
admits no partners i 6= j.

Proof. In this case all exchange polynomials are prime elements by Corollary 2.4 . The assumption
that all partner sets are singletons implies that the exchange polynomials are pairwise distinct and
conversely. �

Corollary 5.3. Suppose that the seed Σ = (x,y, B) is acyclic and has principal coefficients. Then
the cluster algebra A = A(Σ) is factorial.

Proof. In this case the exchange polynomials are pairwise distinct prime elements in K[x,y] by
Corollary 2.5 . �
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More generally, we are able to determine the rank of the class group. Recall that µ∗d(K) denotes
the set of d-th primitive roots of unity in K.

Definition 5.4 (νK(d)). Let νK(d) denote the number of irreducible factors of the cyclotomic
polynomial Φd over K.

In other words, the number νK(d) is

νK(d) =

{
1 if µ∗d(K) = ∅,
ϕ(d) = |(Z/dZ)×| if µ∗d(K) 6= ∅.

Recall also that di = gcd(bji | j ∈ [1, n+m]) denotes the greatest common divisor of the i-th
column of the exchange matrix B for i ∈ [1, n] (see Definition 2.2 ). Partner sets were introduced in
Definition 2.6 . As always, our standing assumption that [1, n] contains no isolated indices if K 6= Z
remains in effect.

Theorem 5.5. Let Σ = (x,y, B) be an acyclic seed with x = (x1, . . . , xn) and y = (xn+1, . . . , xn+m),
and let A = A(Σ). For a partner set V ⊆ [1, n] and d ∈ Z≥1, let

• c(V, d) denote the number of i ∈ V for which d divides di,
• e(V ) = v2(di) be the 2-valuation of di for i ∈ V (this is independent of i).

Then the class group of A is a finitely generated free abelian group of rank

r =
∑
V

V a partner set

rV ,

where
rV = 2|V | − 1− |V | if V is the partner set of isolated indices,

and otherwise
rV =

∑
d∈Z≥1

d odd

(
2c(V,d) − 1) νK(2e(V )+1d)− |V |.

Proof. By Theorem A the class group of A is a finitely generated free abelian group, and its rank
is r = t − n, where t is the number of height-1 prime ideals containing one of the exchangeable
variables x1, . . . , xn. Stated another way, r =

∑
V rV with the sum running over all partner sets

V , and
rV = |{p ∈ X(A) | xi ∈ p for some i ∈ V }| − |V |.

We proceed to determine rV .
First assume K = Z and that V is the partner set of isolated indices. Then fi = 2 is a prime

element of Z[x,y] for every i ∈ V . Thus V = P (2) is the set of 2-partners, and Lemma 4.5 implies

that there are 2|V | − 1 prime ideals containing some xi with i ∈ V . Thus

rV = 2|V | − 1− |V |.
Let now K be Z or a field of characteristic 0, and let V be a partner set distinct from the one

containing the isolated vertices. By Proposition 2.3 there exist monomials g, h ∈ K[x,y] with
disjoint support, at least one of which is non-trivial, such that

fi = gdi + hdi for every i ∈ V .

Moreover, v2(di) = v2(dj) = e(V ) for all i, j ∈ V . For i ∈ V let di = 2e(V )ci with ci odd. By
Lemma 2.1 , over Z, the exchange polynomial factors as

fi =
∏
d|ci

Φ2e(V )+1d(g, h).
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By the same lemma, the polynomial Φ2e(V )+1d(g, h) factors into a product of νK(2e(V )+1d) irreducible
polynomials over K.

Since Φ2e(V )+1d(g, h) for an odd integer d ≥ 1 appears as a factor of fi if and only if d | di, we
conclude that it appears as a factor in c(V, d) of the exchange polynomials. By Lemma 4.5 , we

conclude that there are (2c(V,d) − 1)νK(2e(V )+1d) height-1 prime ideals containing Φ2e(V )+1d(g, h)
and one of the exchangeable variables xi with i a Φ2e(V )+1d(g, h)-partner. Summing over all possible
odd integers d ≥ 1, we find the desired expression for rV . �

Remark 5.6. If K = Z or K = Q, then νK(2e(V )+1d) = 1 for all V and d. If K is algebraically

closed, then νK(2e(V )+1d) = ϕ(2e(V )+1d) = 2e(V )ϕ(d) for all V and odd d ∈ Z≥1.

The expressions for rV reduce to simpler ones in two important special cases. Recall that a
non-constant exchange polynomial fi is irreducible if and only if xdi + 1 is irreducible over K. In
the cases that K is one of Z, Q, or an algebraically closed field, this can easily be expressed purely
in terms of di; see Proposition 2.3 .

Corollary 5.7. If all exchange polynomials corresponding to indices in the partner set V are prime
elements of K[x,y], then

rV = 2|V | − 1− |V |.

Proof. In the case that V is the partner set of isolated indices, there is nothing to show.
Suppose therefore that V is a partner set containing non-isolated vertices. By definition of a

partner set and the irreducibility of the exchange polynomials, we must have fi = fj for all i, j ∈ V .

By Lemma 4.5 , there are 2|V | − 1 height-1 prime ideals in A that contain some xi for i ∈ V . On
the other hand, there are V such cluster variables, each of them reducing the rank by 1. Thus,
rV = 2|V | − 1− |V |.

Alternatively, one may observe that the exchange polynomials have to be irreducible over Z[x,y],
that therefore di is a 2-power, and hence c(V, 1) = |V | and c(V, d) = 0 for any odd d > 1. Thus, in
the expression for rV , only a single term is left over, and since the exchange polynomial is assumed
to be irreducible, necessarily also νK(2e(V )+1) = 1 for this term. �

Recall that σ0(c) denotes the number of positive divisors of c ∈ Z>0.

Corollary 5.8. If a partner set V = {i} of non-isolated indices is a singleton, let di = 2e(V )c with
c odd. Then

rV =
∑
d∈Z≥1

d|di, d odd

νK(2e(V )+1d)− 1 =

{
σ0(c)− 1 if K = Z or K = Q,

di − 1 if K is algebraically closed.

Proof. Since c(V, d) = 1 if d | di and c(V, d) = 0 otherwise, the expression for rV reduces to

rV =
∑
d∈Z≥1

d|di, d odd

νK(2e(V )+1d)− 1.

If K is algebraically, closed, then νK = ϕ is multiplicative (on coprime integers), and

rV = 2e(V )
∑
d∈Z≥1

d|di, d odd

ϕ(d)− 1 = di − 1.

If K = Z or K = Q,

rV =
∑
d∈Z≥1

d|di, d odd

1− 1 = σ0(c)− 1.
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�

Example 5.9. Let n ≥ 1,

B =

[
0 n
−1 0

]
,

and let A = A(B) be the associated cluster algebra. Then f1 = 1 + x2 and f2 = 1 + xn1 . The
partner sets are V1 = {1} and V2 = {2}, with d1 = 1 and d2 = n. Observe that rV1 = 0, so that the
rank of the class group is r = rV2 .

If K is an algebraically closed field, then rV2 = n− 1, corresponding to the fact that f2 factors
as a product of n irreducible polynomials.

Consider now the case where K = Z or K = Q. Write n = 2lc with l ≥ 0 and c odd. Then
rV2 = σ0(c)− 1. This corresponds to the fact that f2 has σ0(c) irreducible factors. In particular, A
is factorial if and only if n is a power of 2, and the rank of C(A) is 1 if and only if only if n = 2lp
for l ≥ 0 and some odd prime p.

Example 5.10. Let Q be the n-Kronecker quiver Q = (1
n−−→ 2), and A = A(Q). Then f1 = 1+xn2

and f2 = 1 + xn1 . The rank of C(A) is twice that of the previous example, so that the rank of C(A)
is 2(n− 1) if K is algebraically closed and 2(σ0(c)− 1) if K = Z or K = Q (with c again denoting
the odd part of n).

Example 5.11. Consider the cluster algebra over Q associated to the quiver from Example 2.8 .

2 7 6

9 3 1 10

4 8 5

3

2

3

2

6

Recall that we had three partner sets with 2 indices each V1 = {2, 4}, V2 = {5, 6} and V3 = {7, 8},
and two singleton sets {1}, {3} of non-isolated vertices. The column-gcd’s are

(di)i∈[1,8] = (1, 3, 1, 1, 1, 1, 6, 2).

For V equal to {1} or {3}, we have rV = 0 by Corollary 5.8 . For V equal to V1 or V3, we have

rV = (22 − 1) + (21 − 1)− 2 = 2.

And for V2, we obtain rV2 = (22 − 1)− 2 = 1. Then r = 5.

Example 5.12. Consider the cluster algebra associated to the quiver with no frozen vertices

0

1 2 · · · l.

The partner sets are V0 = {0} and V1 = [1, l]. For the exchange polynomials we have f0 = 1+x1 · · ·xl
and f1 = · · · = fl = 1 + x0. Thus

r = rV1 = 2l − l − 1.

Remark 5.13. Let l, k ∈ Z≥1. The Eulerian number A(l, k) is the number of permutations σ ∈ Sl
with exactly k descents. Here, a descent of σ is a pair (i, i+ 1) such that σ(i) > σ(i+ 1).

Suppose that k = 1. Then every subset A ⊆ [1, l] defines a permutation

σA =

(
1 2 · · · r r + 1 r + 2 · · · l
a1 a2 · · · ar b1 b2 · · · bl−r

)
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when we write A = {a1 < a2 < . . . < ar} and [1, l] \ A = {b1 < b2 < . . . < bl−r}. It is easy to see
that σ ∈ Sl has exactly one descent if and only if σ = σA for some set A such that ar > b1. Note
that ar ≤ b1 if and only if A = [1, u] for some u ∈ [0, l]. We see that A(l, 1) = 2l − l− 1. Hence the
ranks appearing in Example 5.12 are all Eulerian numbers.

Example 5.14. Building on Example 5.12 , consider a quiver that is an orientation of a complete
bipartite graph: let Q0 = [1, l] ∪ [l + 1, t], and for each i ∈ [1, l] and j ∈ [l + 1, t], let there be an
arrow i→ j in Q. The partner sets are V1 = [1, l] and V2 = [l+ 1, t]. For the exchange polynomials
we have f1 = · · · = fl = 1 + xl+1 · · ·xt and fl+1 = · · · = ft = 1 + x1 · · ·xl. Therefore

r = rV1 + rV2 = 2l − l − 1 + 2t−l − (t− l)− 1.

Example 5.15. This example illustrates that, in the presence of isolated vertices, the class group
can differ depending on whether K = Z or K is a field. Consider the following quiver.

1 4

2

3 5

Then V1 = {1, 3} is the partner set of isolated vertices, V2 = {2} is a singleton, and V3 = {4, 5}.
We have

f1 = f3 = 2, f2 = 1 + x4x5, f4 = f5 = 1 + x2.

If K = Z, then the class group has rank rV1 + rV2 + rV3 = 1 + 0 + 1 = 2. Note that all exchange
polynomials, including f1 = f3 = 2 are prime elements in Z[x1, . . . , x5].

If K is a field, to apply our results we must first freeze 1 and 3 (see Remark 1.13 ). The algebra
after freezing 1 and 3 is isomorphic to the original one since f1 = f3 = 2 ∈ K×. In particular
the class group does not change after freezing the vertices. We find that the class group has rank
rV2 + rV3 = 0 + 1 = 1.

Factoriality of cluster algebras of the simply laced Dynkin types (A, D, E) was first classified in
the preprint [Lam12 ]. Our results now allow us to easily recover this classification. In the following
we list the class groups for all cluster algebras of Dynkin or extended Dynkin type. If Σ is a seed of
Dynkin type G (without coefficients), and A = A(Σ) is the corresponding cluster algebra, we write
C(G) = C(A) for the class group of A.

Corollary 5.16. For the cluster algebras of Dynkin types over K, we obtain the following results:

• The cluster algebra of type An is factorial if n 6= 3, and C(A3) ∼= Z.
• In type Bn:

(1) If n = 2, the cluster algebra of type B2 is factorial if µ∗4(K) = ∅, and C(B2) ∼= Z otherwise.
(2) If n = 3, C(B3) ∼= Z.
(3) If n > 3, then the cluster algebra of type Bn is factorial.

• The cluster algebra of type Cn is factorial if µ∗4(K) = ∅, and C(Cn) ∼= Z otherwise.
• Type Dn has C(Dn) ∼= Z for n > 4, and C(D4) ∼= Z4.
• The cluster algebras of types E6, E7, E8 are factorial.
• The cluster algebra of type F4 is factorial.
• Type G2 has C(G2) ∼= Z if µ∗6(K) = ∅, and C(G2) ∼= Z2 otherwise.

Proof. Exchange matrices for Dynkin cluster algebras can be found in [FWZ17 , Section 5].
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We prove the claim only in type Bn. The other statements can be shown in a similar way. The
cluster algebra of type B2 is treated in Example 5.9 . Assume that n = 3. Then

B =

 0 2 0
−1 0 1
0 −1 0


is an exchange matrix of the cluster algebra of type B3. There are two partner sets V1 = {1, 3} and
V2 = {2}. Using d1 = d2 = d3 = 1 we see r = rV1 = 22 − 1− 2 = 1, so that C(B3) ∼= Z. If n > 3,
then every partner set is a singleton and di = 1 for all i ∈ [1, n] so that C(Bn) ∼= 0 for n > 3. �

Corollary 5.17. For the cluster algebras of extended Dynkin types over K, we obtain the following
results:

• Type Ãn = Ãp,q.

(1) The cluster algebra of type Ãp,q is factorial if (p, q) /∈ {(1, 1), (2, 2)}.
(2) The cluster algebra of type Ã1,1 is factorial if µ∗4(K) = ∅, and C(Ã1,1) ∼= Z2 otherwise.

(3) For type Ã2,2 we have C(Ã2,2) ∼= Z2.

• Type B̃n:
(1) If n = 3, then C(B̃n) ∼= Z4.

(2) If n > 3, then C(B̃n) ∼= Z.

• Type C̃n:
(1) If n = 2, then C(C̃2) ∼= Z if µ∗4(K) = ∅, and C(C̃2) ∼= Z4 if µ∗4(K) 6= ∅.
(2) If n > 2, then the cluster algebra of type C̃n is factorial if µ∗4(K) = ∅, and C(C̃n) ∼= Z2 if

µ∗4(K) 6= ∅.
• Type D̃n has C(D̃n) ∼= Z2 for n > 4, and C(D̃4) ∼= Z11.

• The cluster algebras of types Ẽ6, Ẽ7, Ẽ8 are factorial.
• The cluster algebra of type F̃4 is factorial.
• Type G̃2 has C(G̃2) ∼= Z.

Proof. We prove the claim only in type C̃n. The other statements can be shown in a similar
way. The exchange matrices can be obtained from the Cartan matrices as in [FR07 , Lecture 2,
Section 4.2], and the diagrams needed can be found in [Kac90 , Section 4.8]. Note that νK(4) = 1 if
µ∗4(K) = ∅, and νK(4) = 2 otherwise. Assume that n = 2. Then

B =

 0 1 0
−2 0 2
0 −1 0


is an exchange matrix of the cluster algebra of type C̃2. There are two partner sets V1 = {1, 3} and

V2 = {2}. Using d1 = d3 = 2 and d2 = 1 we see r = rV1 = (22 − 1)νK(4)− 2. Hence C(C̃2) ∼= Z if

µ∗4(K) = ∅, and C(C̃2) ∼= Z4 if µ∗4(K) 6= ∅. If n > 2, then every partner set is a singleton. Using
di = 1 for all i ∈ [2, n] and d1 = dn+1 = 2 we see that r = r{1} + r{n+1} = 2(νK(4) − 1). Hence

C(C̃n) ∼= 0 if µ∗4(K) = ∅, and C(C̃n) ∼= Z2 if µ∗4(K) 6= ∅ in this case. �

The following example shows that every t ∈ Z≥0 can appear as the rank of a class group of an
acyclic cluster algebra. As we have already seen factorial cluster algebras (that is t = 0), it is
sufficient to consider t ≥ 1.

Example 5.18. Let t ∈ Z≥1 and consider the quiver

1 2 . . . t

1′ 1′′ 2′ 2′′ . . . t′ t′′.
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That is, to each vertex i of the linear quiver on t vertices we attach two new vertices i′, i′′. The
partner sets are {i′, i′′} for i ∈ [1, t], and the singleton sets {i} for i ∈ [1, t]. By Corollary 5.7 , then
r{i′,i′′} = 1 and r{i} = 0. We conclude that the class group of the associated cluster algebra has
rank t.

6. A cluster algebra that is not a Krull domain: Markov quiver

For locally acyclic cluster algebras, it is known that they are noetherian and integrally closed,
and therefore Krull domains. It seems that so far no example of a cluster algebra that is not a
Krull domain has been exhibited. In this section we show that the cluster algebra associated to the
Markov quiver, which also provides a wealth of other counterexamples, is not a Krull domain.

The Markov quiver is

1

3 2.

Any mutation of the Markov quiver is again isomorphic to the Markov quiver. It is known that
the cluster algebra A associated to the Markov quiver (with base ring Z) is non-noetherian, not
equal to its upper cluster algebra, and not finitely generated (see [Mul13 ]). The cluster algebra is
Z≥0-graded by restricting the grading by total degree from a Laurent-polynomial ring. (All cluster
variables of this infinite-type cluster algebra have degree 1 in this grading).

The upper cluster algebra U of A, by contrast, is very well-behaved (see [MM15 ]). It is given by
Z[x1, x2, x3,M ] with

M =
x2

1 + x2
2 + x2

3

x1x2x3
.

The upper cluster algebra U can also be presented by generators x1, x2, x3, M with the single
relation x1x2x3M − x2

1 − x2
2 − x2

3 = 0. The representation of the element M is in fact independent
of the chosen cluster, that is, if {y1, y2, y3} is another cluster, then also

M =
y2

1 + y2
2 + y2

3

y1y2y3
.

In [MM15 ] also some height-2 prime ideals of U are computed (the indices should be interpreted
modulo 3):

〈x1, x2, x3〉U , 〈xi, x2
i−1 + x2

i+1,M〉U for i ∈ [1, 3].

Note that 〈xi, x2
i−1 + x2

i+1,M〉U = 〈xi,M〉U due to x2
i−1 + x2

i+1 = xix
′
i. Another important

relation to keep in mind is

xi + x′i = xi−1xi+1M.

The elements x1, x2, x3 are prime elements of U (we use here that the base ring is Z). Hence,
the upper cluster algebra U is factorial by Nagata’s Theorem. By symmetry, every cluster variable
of A is a prime element of U .

Lemma 6.1. If A is a cluster algebra with A 6= U and A is a Krull domain, then there exists a
p ∈ X(A) such that p contains at least one cluster variable of each cluster.

Proof. For a cluster y = {y1, y2, y3} let Ay = A[y−1
1 , y−1

2 , y−1
3 ]. Let C denote the set of all clusters.

If p ∈ X(A) with y ∩ p = ∅, then pAy is a prime ideal of Ay and hence Ap = (Ay)pAy .
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We proceed with a proof by contradiction. Suppose that, for every p ∈ X(A), there is a cluster
y ∈ C with y ∩ p = ∅. Since A is a Krull domain

A =
⋂

p∈X(A)

Ap =
⋂
y∈C

⋂
p∈X(A)
p∩y=∅

Ap =
⋂
y∈C

⋂
p∈X(A)
p∩y=∅

(Ay)pAy =
⋂
y∈C

Ay = U ,

a contradiction. �

For the remainder of this section, let A be the Markov cluster algebra.

Let A1 = 〈{x | x is a cluster variable }〉A = { f ∈ A | f has constant term 0 }.
Let (x1, x2, x3) be the initial cluster. Note that the labeling of the initial cluster induces on every

other cluster a natural labeling (y1, y2, y3) that is consistent with that of the initial cluster, so that
yj corresponds to xj . For i ∈ [1, 3], let

p(i) = 〈{ yi, yi−1 + y′i−1, yi+1 + y′i+1 | (y1, y2, y3) a cluster }〉A,
where the clusters are labeled consistently with the initial cluster.

Lemma 6.2. Let (x1, x2, x3) be a cluster of A.

(1) A1 = 〈x1, x2, x3〉U ∩A = A1U ∩A.
(2) p(i) = 〈xi,M〉U ∩A = p(i)U ∩A for i ∈ [1, 3].

In particular, A1, p(1), p(2), and p(3) are prime ideals of A.

Proof. (1) First note A1U = 〈x1, x2, x3〉U : The inclusion “⊇” is trivial. Due to xi+x
′
i = xi−1xi+1M

we have x′i ∈ 〈x1, x2, x3〉U for all i ∈ [1, 3]. Inductively, A1U ⊆ 〈x1, x2, x3〉U . Therefore also
A1U ∩A = 〈x1, x2, x3〉U ∩A.

Thus we have a ring homomorphism ϕ : A/A1 → U/〈x1, x2, x3〉U ∼= Z[M ], where the codomain is
a polynomial ring in the indeterminate M . Note that imϕ ∼= Z. Since also A/A1

∼= Z, we see that
ϕ is injective, and hence A1 = 〈x1, x2, x3〉U ∩A.

(2) Without loss of generality we consider the case i = 1. Clearly U/〈x1,M〉U ∼= Z[x2, x3]/〈x2
2 +

x2
3〉. We first show p(1) ⊆ 〈x1,M〉U , and do so inductively. Suppose (y1, y2, y3) is a cluster. Since
yj + y′j = yj−1yj+1M , we have yj + y′j ∈ 〈x1,M〉U . If y1 ∈ 〈x1,M〉U then this implies that also

y′1 ∈ 〈x1,M〉U . Hence p(1)U ⊆ 〈x1,M〉U .
Due to x2, x3 ∈ A, the ring homomorphism A/p(1)→ U/〈x1,M〉U is surjective. If we can show

A/p(1) ∼= Z[x2, x3]/〈x2
2 + x2

3〉, we can conclude p(1) = 〈x1,M〉U ∩A and are done.
We have x2

2 + x2
3 = x1x

′
1 ∈ p(1). Moreover, for any cluster (y1, y2, y3) we have yj + y′j ∈ p(1), so

that y′j ≡ −yj mod p(1). This shows that A/p(1) is generated by x2 and x3 as a Z-algebra. Thus

A/p(1) is a factor ring of Z[x2, x3]/〈x2
2+x2

3〉. Since A/p(1) maps surjectively onto Z[x2, x3]/〈x2
2+x2

3〉,
we must in fact have A/p(1) ∼= Z[x2, x3]/〈x2

2 + x2
3〉. �

Lemma 6.3. If a prime ideal p ⊆ A contains two cluster variables of the same cluster, it contains
all cluster variables of A.

Proof. We first show: If a prime ideal p ⊆ A contains two cluster variables of the same cluster, it
contains the third. Without restriction, let x1, x2 ∈ p. Let (x′1, x2, x3) be the cluster after mutation
in direction 1, so that x′1x1 = x2

2 + x2
3. From this relation we see x2

3 ∈ p, hence p contains the entire
cluster {x1, x2, x3}.

The claim now follows easily by an inductive argument: If p contains a cluster {x1, x2, x3}, after
mutation in any direction, it still contains two variables of the mutated cluster, and hence also the
new variable. �

Lemma 6.4. Let p ⊆ A be a prime ideal such that p contains one variable of each cluster. Then p
contains one of A1, p(1), p(2), or p(3).
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Proof. If p contains two variables of one cluster, then p = A1 by Lemma 6.3 . We may assume that
p contains exactly one variable of each cluster. Fix a cluster {x1, x2, x3} and suppose x1 ∈ p. Then
also x′1 ∈ p since p contains exactly one variable of {x′1, x2, x3}, and x2, x3 6∈ p. Inductively, we
find that for each cluster, p contains the variable corresponding to x1 of our initial cluster.

Thus, for a cluster (y1, y2, y3), with labeling consistent with our initial seed, we have y1 ∈ p.
Then also y2

2 + y2
3 = y1y

′
1 ∈ p. Hence y2(y2 + y′2) = y2

1 + y2
2 + y2

3 ∈ p. Since y2 6∈ p, we must have
y2 + y′2 ∈ p. Similarly, we conclude y3 + y′3 ∈ p. Altogether p(1) ⊆ p. �

Theorem 6.5. The cluster algebra A associated to the Markov quiver is not a Krull domain.

Proof. Suppose to the contrary that A is a Krull domain. By Lemma 6.1 , there exists a height-1
prime ideal p ⊆ A containing one variable of each cluster. Hence at least one of A1, or p(i) for
i ∈ [1, 3] must be a height-1 prime ideal of A. We show that this is false, by showing that each of
these ideals properly contains the prime ideal x1U ∩A. Recall that, in U , each cluster variable is
prime. In particular, x1U is a prime ideal and does not contain any other cluster variable.

Case A1: Since A1 = A1U ∩A and x1U ⊆ A1U , we have x1U ∩A ⊆ A1. However, x2 ∈ A1 \ x1U .
Case p(1): Since p(1) = p(1)U ∩ A and x1U ⊆ p(1)U , we have x1U ∩ A ⊆ p(1). However,

x′1 ∈ p(1) \ x1U . �

Lemma 6.6. None of the cluster variables of A is a prime element.

Proof. If one cluster variable is prime, then all are, by symmetry. Due to Nagata’s Theorem, the
algebra A is then factorial, and hence a Krull domain. This contradicts what we just showed.

Alternatively, and more directly, if (x1, x2, x3) is a cluster we see

xi(xi + x′i) = x2
1 + x2

2 + x2
3,

for all i ∈ [1, 3]. Since we know that cluster variables are non-associated atoms, we see that A is
not prime. �

Remark 6.7. Since A is not a Krull domain, it cannot be both v-noetherian and completely
integrally closed. We do not know which of these properties fail(s).

7. Non-invertible frozen variables

Throughout the paper we have so far assumed that in a cluster algebra all frozen variables are
invertible. In general one is also interested in cases where only some (or none) of the frozen variables
are invertible. In this section we briefly consider this situation. It turns out that Theorem A 

extends straightforwardly, while the issue of Theorem 5.5 (and hence Theorem B ) is more subtle.
First we need to revisit the definition of a cluster algebra (Definition 1.10 ). For a tuple of frozen

variables y we tacitly use the notation inv ⊆ y to denote a subset of frozen variables. Given a
seed Σ = (x,y, B) and such a subset inv ⊆ y of frozen variables, let again X denote the set of all
exchangeable variables in a seed equivalent to Σ, and define

A(Σ, inv) = K[x, y, z, z−1 | x ∈ X , y ∈ y, z ∈ inv] ⊆ F(Σ).

The difference to Definition 1.10 is that now only the frozen variables in inv are invertible, while
those in y \ inv are non-invertible frozen variables. The case that we have dealt with so far
corresponds to all frozen variables being invertible, that is inv = y.

For A = A(Σ, inv) with inv ⊆ y let us define the mixed Laurent/polynomial ring

Ax = A[x−1 | x ∈ x] = K[x, x−1, y, z, z−1 | x ∈ x, y ∈ y, z ∈ inv] ⊆ F(Σ).

A refined version of the Laurent phenomenon implies A ⊆ Ax (see [FWZ16 , Theorem 3.3.6]). Geiss–
Leclerc–Schröer, in [GLS13 ], consider this more general case as well, and so Theorem 1.22 holds
with the following modification: the group of units of A is A× = K× × 〈x±1, z±1 | x ∈ x, z ∈ inv〉.
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The non-invertible frozen variables are atoms in A because they are atoms in Ax and A× = A×x .
Corollary 1.23 carries over straightforwardly to this setting.

We obtain a generalization of Theorem A .

Theorem 7.1. Let Σ = (x,y, B) be a seed with exchangeable variables x = (x1, . . . , xn) and frozen
variables y = (xn+1, . . . , xn+m). Let A = A(Σ, inv) be the cluster algebra associated to Σ in which
(only) the frozen variables inv ⊆ y are invertible. Suppose that A is a Krull domain, and let
t ∈ Z≥0 denote the number of height-1 prime ideals that contain one of the exchangeable variables
x1, . . . , xn. Then the class group of A is a free abelian group of rank t− n.

If n+m > 0, that is A 6= K, then each class contains exactly |K| height-1 prime ideals.

Proof. We note that Lemma 3.3 holds true in this setting with the same proof.
Now A[x−1

1 , . . . , x−1
n ] = Ax = D[x±1

1 , . . . , x±1
n ] is a Laurent polynomial ring in the indeterminates

x1, . . . , xn over the mixed Laurent/polynomial ring D = K[y, z, z−1 | y ∈ y, z ∈ inv]. Since D
is factorial, we may apply Theorem 3.1 to the cluster algebra A and the exchangeable variables
{x1, . . . , xn}. Thus, the class group C(A) is again generated by t elements with n relations, stemming
from the factorizations of x1A, . . . , xnA as divisorial products of height-1 prime ideals.

The proof now proceeds as the one of Theorem A (on page 16 ). �

The situation of acylic seeds (Theorem 5.5 ) is more complicated. The work in [BFZ05 , Mul13 ]
that we build upon assumes that frozen variables are invertible. This factors into our work in
several ways.

(1) To show that (locally) acyclic cluster algebras with inv = y are Krull domains, one uses
that they are equal to their upper cluster algebras, see [Mul14 ]. Using the refined Laurent
phenomenon, we may define the upper cluster algebra of A = A(Σ, inv) as

U = U(Σ, inv) =
⋂

Σ′=(x′,y,B′)

Ax′ ,

where the intersection is taken over all seeds Σ′ mutation-equivalent to Σ.
Whether a given cluster algebra is equal to its upper cluster algebra is an important theme

in the study of cluster algebras. We refer to the introduction of [GY18 ] for a good overview on
current results. In contrast to the case inv = y, if inv 6= y, then there exist locally acyclic
cluster algebras that are not equal to their upper cluster algebra. An example can be found in
[BMS19 , Proposition 4.1], based on [GSV14 ].

However, even when inv 6= y, there are still many families of cluster algebras known that
coincide with their upper cluster algebras. In [GY18 ], Goodearl–Yakimov construct cluster
algebra structures on symmetric Poisson nilpotent algebras (under mild conditions), and show
that these cluster algebras are equal to their upper cluster algebras.

On the combinatorial side, Bucher–Machacek–Shapiro, in [BMS19 ], give sufficient criteria
for A = U in the case where inv 6= y. They show A = U for locally isolated cluster algebras.
If y = inv, then a cluster algebra is locally isolated if and only if it is locally acyclic, but in
general the former condition is more restrictive than the latter.

A seed Σ = (x,y, B) is source-freezing (with respect to inv ⊆ y) if all arrows between an
exchangeable index and non-invertible frozen index point from the exchangeable index to the
frozen index. In other words, if i is the index of a non-invertible frozen variable, then the
entries of the i-th row of the exchange matrix B are non-positive. If Σ is acyclic source-freezing,
then A(Σ, inv) = U(Σ, inv) by [BMS19 , Theorem 3.7 and Corollary 3.8].

(2) Theorem 1.11 , giving a presentation for acyclic cluster algebras, is used in Section 4 and
assumes y = inv.

(3) The proof of the important Lemma 4.1 crucially assumes y = inv.
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That said, the following lemma in combination with Nagata’s Theorem sometimes still allows a
reduction to the case of invertible frozen variables.

Lemma 7.2. Let Σ = (x,y, B) be a seed with x = (x1, . . . , xn) and y = (xn+1, . . . , xn+m). Let
inv ⊆ y and A = A(Σ, inv). Then every non-invertible frozen variable is a prime element in the
upper cluster algebra of A.

Proof. By relabeling, we may suppose xn+1, . . . , xn+p 6∈ A× and xn+p+1, . . . , xn+m ∈ A× for some
p ∈ [0,m]. Let i ∈ [n+ 1, n+ p] so that xi is a non-invertible frozen variable. Let U = U(Σ, inv)
be the upper cluster algebra of A. Let a, b ∈ U and suppose that xi divides ab. We have to show
that xi divides a or b in U .

Since xi is prime in Ax, the element xi must divide a or b in Ax. Without restriction, assume
that xi divides a in Ax, in other words a/xi ∈ Ax. We shall show that then a/xi ∈ Ax′ for every
seed (x′,y, B′). Then a/xi ∈ U , that is, the element xi divides a in U .

Since any two seeds are connected by a sequence of mutations, it suffices to show: If (x,y, B) is
any seed with a/xi ∈ Ax, and (x′,y, B) is obtained from (x,y, B) by mutation at k ∈ [1, n], then
also a/xi ∈ Ax′ . To simplify the notation, we may assume k = 1. Since a ∈ xiAx and a ∈ U ⊆ Ax′ ,
we may write

a =
xif(x1, x2, . . . , xn+m)

xr1M
r

=
g(x′1, x2, . . . , xn+m)

(x′1)rM r
, (5)

with f ∈ K[x1, x2, . . . , xn+m], with g ∈ K[x′1, x2, . . . , xn+m], with M = x2 · · ·xnxn+p+1 · · ·xn+m

and with r ∈ Z≥0. Since f ∈ A ⊆ Ax′ we may further write f = f ′(x′1, x2, . . . , xn+m)/(x′1)sM s with
f ′ ∈ K[x′1, x2, . . . , xn+m] and s ∈ Z≥0. Moreover x1x

′
1 = f1(x2, . . . , xn) with f1 ∈ K[x2, . . . , xn]

the exchange polynomial of x1. Substituting into Equation (5 ) to eliminate x1, and clearing
denominators,

(x′1)2rxif
′ = (x′1)sM sf r1g.

All the factors in this expression are contained in the polynomial ring K[x′1, x2, . . . , xn+m], in which
xi is a prime element. Since xi does not divide the exchange polynomial f1 on the right side, it
must divide g. Then g = xig̃ with g̃ ∈ K[x′1, x2, . . . , xn+m] and thus a/xi = g̃/(x′1)rM r ∈ Ax′ . �

Proposition 7.3. Let Σ = (x,y, B) be a seed with exchangeable variables x = (x1, . . . , xn) and
frozen variables y = (xn+1, . . . , xn+m). Let A(Σ, inv) be the cluster algebra associated to Σ in
which (only) the frozen variables inv ⊆ y are invertible. Suppose that A(Σ, inv) is a Krull domain
and that it is equal to its upper cluster algebra U(Σ, inv). Then

C(A(Σ, inv)) ∼= C(A(Σ,y)).

Proof. Note that A(Σ,y) = A(Σ, inv)[y−1 | y ∈ y \ inv]. By Lemma 7.2 all non-invertible frozen
variables are prime elements of A(Σ, inv). Thus Nagata’s Theorem implies the claim. �

As A(Σ,y) is a cluster algebra in which all frozen variables are invertible, our earlier results
can be applied to it. Thus the computation of the class group for A(Σ, inv) may sometimes still
be carried out. For instance, this is the case if Σ is an acyclic source-freezing seed (with respect
to inv). Then A(Σ, inv) = U(Σ, inv), and as in [Mul13 , Theorem 4.2], one sees that A(Σ, inv) is
a finitely generated K-algebra, and in particular noetherian. Hence A(Σ, inv) is a Krull domain
with C(A(Σ, inv)) ∼= C(A(Σ,y)), and we can compute the rank of the class group directly from the
exchange matrix, as in Theorem 5.5 .

Remark 7.4. Outside these situations, we do not know how the choice of inv changes the
factorization theoretical properties of a cluster algebra A. In particular, we do not know whether
non-invertible frozen variables are always prime elements in A. In light of Lemma 7.2 and the fact
that they are always atoms (a necessary condition for them to be prime elements), it is tempting
to hope so.
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8. Further directions

While we have a satisfying answer to the computation of a class group of an acyclic seed, and
some knowledge on the structure of the class group of a cluster algebra that is a Krull domain in
general, several open questions remain. We record some of them in this final section.

• We know how to determine the class group of a cluster algebra with acyclic seed (if all
frozen variables are invertible); for a cluster algebra that is a Krull domain and has a finite
presentation, we at least have an algorithm based on the primary decomposition of the variables
of the initial seed.

Several interesting examples of cluster algebras are not acyclic, but are locally acyclic. It
would be interesting to have a procedure for computing the class group in these cases, in terms
of quiver combinatorics.
• While we know that every locally acyclic cluster algebra (with invertible frozen variables) is a

Krull domain, and not every cluster algebra is a Krull domain, we lack an exact classification
of which cluster algebras are Krull domains.
• Any divisor closed submonoid of a Krull domain is itself a Krull monoid. It may be interesting

to investigate the divisor-closed submonoid of a cluster algebra generated by its initial cluster,
respectively, by all cluster variables.
• Any Krull domain A possesses a transfer homomorphism to a monoid of zero-sum sequences
B(G0), where G0 is the subset of the class group of A containing height-1 prime ideals (see, for
instance, [GHK06 , Chapter 3.2] or [Ger16 ]). The atoms in B(G0) are the minimal zero-sum
sequences over G0. If A is an cluster algebra, then each cluster variable is an atom, and hence
gives rise to such a minimal zero-sum sequence. It may be interesting to see which minimal
zero-sum sequences arise in this way.
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