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Abstract. Let D be a principal ideal domain and R(D) = {
(
a b
0 a

)
| a, b ∈ D}

be its self-idealization. It is known that R(D) is a commutative noetherian

ring with identity, and hence R(D) is atomic (i.e., every nonzero nonunit can

be written as a finite product of irreducible elements). In this paper, we com-

pletely characterize the irreducible elements of R(D). We then use this result

to show how to factorize each nonzero nonunit of R(D) into irreducible ele-

ments. We show that every irreducible element of R(D) is a primary element,

and we determine the system of sets of lengths of R(D).

1. Introduction

Let R be a commutative noetherian ring. Then R is atomic, which means that

every nonzero nonunit element of R can be written as a finite product of atoms

(irreducible elements) of R. The study of non-unique factorizations has found

a lot of attention. Indeed this area has developed into a flourishing branch of

Commutative Algebra (see some surveys and books [22, 66, 88, 55]). However, the focus

so far was almost entirely on commutative integral domains, and only first steps

were done to study factorization properties in rings with zero-divisors (see [33, 77]).

In the present note we study factorizations in a subring of a matrix ring over a

principal ideal domain, which will turn out to be a commutative noetherian ring

with zero-divisors.

To begin with, we fix our notation and terminology. Let R be a commutative

ring with identity and U(R) be the set of units of R. Two elements a, b ∈ R are said

to be associates if aR = bR. Clearly, if a = ub for some u ∈ U(R), then a and b are

associates. An a ∈ R is said to be irreducible if a = bc implies that either b or c is

associated with a. We say that R is atomic if every nonzero nonunit of R is a finite

product of irreducible elements. It is clear that noetherian rings are atomic (cf. [33,

Theorem 3.2]) and that 0 ∈ R is irreducible if and only if R is an integral domain.

A ring R is a half-factorial ring (HFR) (resp., bounded factorization ring (BFR))

if R is atomic and two factorizations of a nonzero nonunit into irreducible elements

have the same length (resp., for each nonzero nonunit x ∈ R, there is an integer

N(x) ≥ 1 so that for any factorization x = x1 · · ·xn, where each xi is a nonunit,

we have n ≤ N(x)). R is a FFR (finite factorization ring) if R is atomic and each

nonzero nonunit has only finitely many factorizations into irreducibles, up to order

and associates. A nonzero nonunit x ∈ R is said to be prime (resp., primary) if xR

is a prime (resp., primary) ideal. Hence a prime element is primary but not vice
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versa (for example, if Z is the ring of integers, then 4 ∈ Z is primary but not prime).

We say that R is a unique factorization ring (UFR) if every nonzero principal ideal

of R can be written as a product of principal prime ideals (cf. [33, Theorem 4.9]).

Clearly, a prime element is irreducible, and so a UFR is atomic.

For x ∈ R a nonzero nonunit, its set of lengths is defined as

L(x) = { k ∈ N | there exist irreducibles u1, . . . , uk ∈ R with x = u1 · . . . · uk }.

Clearly, x is irreducible if and only if L(x) = { 1 }. If x ∈ U(R), we set L(x) = { 0 }.
The system of sets of lengths is defined as L(R) =

{
L(x) | x ∈ R \ { 0 }

}
. Sets

of lengths and invariants derived from them are some of the classical invariants

considered in non-unique factorization theory (see [88, Ch. 1.4]). The reader is

referred to [88] for undefined definitions and notations.

Let M be an R-module. The idealization R(+)M of M is a ring, which is defined

as an abelian group R ⊕ M , whose ring multiplication is given by (a, b) · (x, y) =
(ax, ay+ bx) for all a, x ∈ R and b, y ∈ M . It is known that R(+)M is a noetherian

ring if and only if R is noetherian and M is finitely generated [44, Theorem 4.8].

Let D be an integral domain, Mat2×2(D) be the ring of 2× 2 matrices over D, and

R(D) = {( a b
0 a ) | a, b ∈ D}. It is easy to show that R(D) is a commutative ring with

identity under the usual matrix addition and multiplication; in particular, R(D) is

a subring of Mat2×2(D). Clearly, the map a 7→ ( a 0
0 a ) embeds D into R(D), and the

map φ : D(+)D → R(D), given by φ(a, b) = ( a b
0 a ), is a ring isomorphism. In view

of this isomorphism, R(D) is called the self-idealization of D (cf. [1313]). There is

also an isomorphism D[X]/⟨X2⟩ → R(D) mapping a+ bX + ⟨X2⟩ to ( a b
0 a ). Some

factorization properties of R(+)M have been studied in [33, Theorem 5.2]. For more

on basic properties of R(+)M (and hence of R(D)), see [44] or [1111, Section 25].

Let D be a principal ideal domain (PID). Then R(D) is noetherian, and thus

R(D) is atomic. In Section 2, we first characterize the irreducible elements of R(D),

and we then use this result to show how to factorize each nonzero nonunit of R(D)

into irreducible elements via the factorization of D. We show that ( 0 1
0 0 ) is the

unique prime element (up to associates) of R(D). We prove that every nonzero

nonunit of R(D) can be written as a product of primary elements. Finally, in

Section 3, we completely describe the system of sets of lengths L(R(D)).

We write N = { 1, 2, 3, . . . } for the set of positive integers, and N0 = N∪{ 0 } for

the set of non-negative integers.

2. Factorization in R(D) when D is a PID

Let D be an integral domain, and

R(D) =

{(
a b

0 a

) ∣∣∣∣ a, b ∈ D

}
be the self-idealization of D. Clearly, ( 1 0

0 1 ) is the identity of R(D).

If α = ( a b
0 a ) ∈ R(D), then nr(α) = a is the norm, and this is a ring homomor-

phism R(D) → D. Observe that α is a zero-divisor if and only if a = 0. We write

R(D)• for the monoid of non-zero-divisors of R(D).

We begin this paper by characterizing the units of R(D), which is very useful in

the proof of Theorem 55.
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Lemma 1. (cf. [1111, Theorem 25.1(6)]) If D is an integral domain, then α =

( a b
0 a ) ∈ R(D) is a unit of R(D) if and only if a is a unit of D.

Proof. If α is a unit, then

α ·
(
x y

0 x

)
=

(
1 0

0 1

)
for some

(
x y

0 x

)
∈ R(D).

Thus ax = 1, and so a ∈ U(D). Conversely, assume that a is a unit, and let

u = a−1. Then(
a b

0 a

)(
u −bu2

0 u

)
=

(
1 0

0 1

)
and

(
u −bu2

0 u

)
∈ R(D).

Thus α is a unit. □

For an arbitrary commutative ring R, there can be two elements a, b ∈ R such

that a and b are associates but a ̸= ub for all u ∈ U(R) (see, for example, [33,

Example 2.3]). This cannot happen in the self-idealization of an integral domain.

Lemma 2. Let D be an integral domain and α, β ∈ R(D) and let a, b, x, y ∈ D

such that α = ( a b
0 a ) and β = ( x y

0 x ). The following statements are equivalent.

(a) α and β are associates.

(b) There exists θ ∈ U(R(D)) such that β = θα.

(c) There exists u ∈ U(D) such that x = au and y ≡ bu mod a.

Proof. (a) ⇒ (b): If α and β are associates, then there are some γ, δ ∈ R(D) so

that α = βγ and β = αδ. Hence if

γ =

(
a1 b1
0 a1

)
and δ =

(
x1 y1
0 x1

)
,

then a = xa1 and x = ax1, and so a1, x1 ∈ U(D). Thus γ, δ ∈ U(R(D)) by

Lemma 11.

(b) ⇒ (c): Let θ = ( u v
0 u ). By Lemma 11, u ∈ U(D). From β = θα it follows that

x = au and y = av + bu ≡ bu mod a.

(c) ⇒ (b) and (a): Let v ∈ D be such that y = bu+ av. Define θ = ( u v
0 u ). Then

θ ∈ U(R(D)) by Lemma 11 and β = θα. Thus, α and β are associates. □

We write α ≃ β if α, β ∈ R(D) are associates.

Lemma 3. Let D be a PID and let α = ( a b
0 a ) ∈ R(D)•. If a = cd with coprime

c, d ∈ D, then there exist γ, δ ∈ R(D) with α = γδ and nr(γ) = c, nr(δ) = d.

This representation is unique in the sense that, if γ′, δ′ ∈ R(D) with α = γ′δ′ and

nr(γ′) ≃ c, nr(δ′) ≃ d, then γ ≃ γ′ and δ ≃ δ′.

Proof. Existence: Since 1 ∈ GCD(c, d) and D is a PID, there exist e, f ∈ D such

that b = cf + ed. Then γ = ( c e
0 c ) and δ =

(
d f
0 d

)
are as claimed.

Uniqueness: Let

γ′ =

(
c′ e′

0 c′

)
and δ′ =

(
d′ f ′

0 d′

)
with c′, e′, d′, f ′ ∈ D and suppose that α = γ′δ′. Let u, v ∈ U(D) such that c′ = cu

and d′ = dv. Since c′d′ = cd, necessarily v = u−1. Since cf + ed = c′f ′ + e′d′ =
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c(f ′u) + d(e′v), we have c(f ′u) ≡ cf mod d and f ′u ≡ f mod d, i.e., f ′ ≡ fv

mod d. Therefore δ′ ≃ δ and similarly γ′ ≃ γ. □

Corollary 4. Let D be a PID and let α ∈ R(D)• \ U(R(D)). Then there exist

β1, . . . , βn ∈ R(D)• of pairwise distinct prime power norm, such that α = β1 ·. . .·βn.

This representation is unique up to order and associates.

Proof. Let nr(α) = pe11 · . . . · penn with n ≥ 0, p1, . . . , pn ∈ D pairwise distinct prime

elements and e1, . . . , en ≥ 1. By induction on n and the previous lemma, there

exist β1, . . . , βn ∈ R(D)• such that α = β1 · . . . ·βn and nr(βi) = peii for all i ∈ [1, n].

Suppose α = β′
1 · . . . β′

m is another such factorization. Since D is a UFD, then

m = n and there exists a permutation π ∈ Sn such that nr(β′
π(i)) ≃ nr(βi) for all

i ∈ [1, n]. The uniquenes statement of the previous lemma implies β′
i ≃ βi for all

i ∈ [1, n]. □

As a consequence, to study factorizations of α ∈ R(D)•, it is sufficient to study

factorizations of α ∈ R(D)• with prime power norm.

We next give the first main result of this paper, which completely characterizes

the irreducible elements of R(D) when D is a PID.

Theorem 5. Let D be a PID and α = ( a b
0 a ) ∈ R(D). Then α is irreducible if and

only if either (i) a = 0 and b ∈ U(D), (ii) a = p or (iii) a = upn and 1 ∈ GCD(a, b)

for some prime p ∈ D, u ∈ U(D), and integer n ≥ 2.

Proof. Necessity. Assume that a = 0, and let β =
(
b 0
0 b

)
and γ = ( 0 1

0 0 ). Then

α = β · γ and αR(D) ̸= βR(D) because b ̸= 0. Hence αR(D) = γR(D), and so

γ = α · δ for some δ = ( x y
0 x ) ∈ R(D). Thus bx = 1.

Next, assume that a ̸= 0. If a is not of the form upn, then Lemma 33 implies

that α = β ·γ with nr(β) and nr(γ) nonzero nonunits. Hence α is not irreducible, a

contradiction. Thus a = upn for some prime p ∈ D, u ∈ U(D), and integer n ≥ 1.

If n = 1, then up is also a prime element of D and we have case (ii).

Finally, assume that n ≥ 2 and pk ∈ GCD(a, b) for some integer k ≥ 1. Let

b = b1p
k, where b1 ∈ D. Then α = θ · ξ, where

θ =

(
p 0

0 p

)
and ξ =

(
upn−1 b1p

k−1

0 upn−1

)
,

but θ, ξ ̸∈ αR(D), a contradiction. This completes the proof.

Sufficiency. Let α = β · γ, where

β =

(
x1 y1
0 x1

)
and γ =

(
x2 y2
0 x2

)
.

We will show that β or γ is a unit, and thus α is irreducible.

Case 1. a = 0 and b ∈ U(D). Note that x1 = 0 or x2 = 0; so for convenience,

let x2 = 0. Then x1y2 = b, and since b ∈ U(D), we have x1 ∈ U(D). Thus β is a

unit of R(D) by Lemma 11.

Case 2. a = p for a prime p ∈ D. Then α = β · γ implies that either x1 or x2 is

a unit in D. Hence β or γ is a unit in R(D) by Lemma 11.
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Case 3. a = upn for a prime p ∈ D, u ∈ U(D), n ≥ 2 and 1 ∈ GCD(a, b). Since

p is a prime and α = β · γ, we have

β =

(
vpk x

0 vpk

)
and γ =

(
wpn−k y

0 wpn−k

)
for some 0 ≤ k, n − k ≤ n, x, y ∈ D, and v, w ∈ U(D) with vw = u. Hence

b = pkvy + pn−kwx, and thus k = 0 or n − k = 0 because a and b are coprime.

Therefore β or γ is a unit in R(D) by Lemma 11. □

Corollary 6. Let D be a PID and α = ( a b
0 a ) ∈ R(D) be a nonzero nonunit such

that c ∈ GCD(a, b), a = ca1, and b = cb1 for some c, a1, b1 ∈ D. Let c = upe11 · · · penn
and a1 = qk1

1 · · · qkm
m (when a ̸= 0) be prime factorizations of c and a1, respectively,

where u ∈ U(D). The following is a factorization of α into irreducible elements.

(1) If a = 0, then

α =

(
0 u

0 0

) ∏n

i=1

(
pi 0

0 pi

)ei

.

(2) If a ̸= 0, then

α =

(
u 0

0 u

) n∏
i=1

(
pi 0

0 pi

)ei m∏
j=1

(
q
kj

j cj

0 q
kj

j

)

for some cj ∈ D with 1 ∈ GCD(cj , qj).

Proof. (1) Clear.

(2) We first note that

α =

(
c 0

0 c

)(
a1 b1
0 a1

)
and (

c 0

0 c

)
=

(
u 0

0 u

)(
p1 0

0 p1

)e1

· · ·
(
pn 0

0 pn

)en

.

Next, assume that a1 = b2d2 for some b2, d2 ∈ D with 1 ∈ GCD(b2, d2). Then

there are some x, y ∈ D such that b2(xb1) + d2(yb1) = b1 because D is a PID, and

hence (
a1 b1
0 a1

)
=

(
b2 yb1
0 b2

)(
d2 xb1
0 d2

)
.

Note that 1 ∈ GCD(a1, b1); hence 1 ∈ GCD(b2, yb1) and 1 ∈ GCD(d2, xb1). So by

repeating this process, we have(
a1 b1
0 a1

)
=

m∏
j=1

(
q
kj

j cj

0 q
kj

j

)

for some cj ∈ D with 1 ∈ GCD(cj , qj). □

Corollary 7. If D is a PID, then ( 0 1
0 0 ) is the unique prime element (up to asso-

ciates) of R(D).
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Proof. Clearly, prime elements are irreducible, and hence by Theorem 55, we have

three cases to consider. Let α = ( a b
0 a ) ∈ R(D) be irreducible.

Case 1. a = 0 and b ∈ U(D). Note that if we set I = ( 0 1
0 0 ), then α = I ·

(
b 0
0 b

)
and

(
b 0
0 b

)
∈ U(R(D)) by Lemma 11; so α and I are associates. Let β = ( x y

0 x ), γ =

( c d
0 c ) ∈ R(D). Then βγ ∈ IR(D) if and only if xc = 0; so if x = 0 (for convenience),

then β ∈ IR(D). Thus I is a prime.

Cases 2 and 3. a ̸= 0. Note that(
a b− 1

0 a

)2

=

(
a2 2a(b− 1)

0 a2

)
=

(
a b

0 a

)(
a b− 2

0 a

)
∈ αR(D),

but
(
a b−1
0 a

)
̸∈ αR(D) because a ̸∈ U(D). Thus α is not a prime. □

For zero-divisors and elements with prime power norm, the following lemma

further refines Corollary 66, by giving all possible factorizations, up to order and

associates. The general case can be obtained in combination with Corollary 44.

Lemma 8. Let D be a PID, and let α = ( a b
0 a ) ∈ R(D) \ { 0 } with a, b ∈ D.

(1) Suppose a = 0 and b = q1 · . . . · qn, with (possibly associated) prime powers

q1, . . . , qn ∈ D. Then, for every choice of a1, . . . , an ∈ D,

α =

(
0 1

0 0

) n∏
i=1

(
qi ai
0 qi

)
,

and this is a factorization into irreducibles if and only if for all i ∈ [1, n]

either qi is prime or 1 ∈ GCD(qi, ai).

(2) Suppose a = pn with p ∈ D a prime element and n ∈ N. For all l ∈ [1, n]

let ml ∈ N0 and for all j ∈ [1,ml] let al,j ∈ D. Then

α =
n∏

l=1

ml∏
j=1

(
pl al,j
0 pl

)
if and only if n =

∑n
l=1 mll and b =

∑n
l=1 p

n−l(
∑ml

j=1 al,j). This is a

product of irreducibles if and only if 1 ∈ GCD(al,j , p) for all l ∈ [2, n] and

j ∈ [1,ml].

Up to order and associativity of the factors, all the factorizations of α are of this

form.

Proof. This is checked by a straightforward calculation. The statement about the

irreducibles follows from the characterization of the irreducible elements in Theo-

rem 55. That every representation of α as a product of irreducibles is, up to order

and associates, one of the stated ones also follows from this characterization. □

Corollary 9. Let D be a PID.

(1) R(D) is a BFR.

(2) R(D) is a FFR if and only if D/pD is finite for all prime elements p ∈ D.

(3) If D is a field, then every nonzero nonunit of R(D) is a prime, and hence

R(D) is a UFR with a unique nonzero (prime) ideal.
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Proof. (1) By Corollary 66, R(D) is atomic, and if α = ( a b
0 a ) ∈ R(D), then the

lengths of factorizations of α into irreducible elements are less than or equal to that

of the prime factorization of a or b in D, plus at most one. Thus R(D) is a BFR.

(2) Suppose first that D/pD is finite for all prime elements p ∈ D. Then also

D/pnD is finite for all n ≥ 1 and all prime elements p ∈ D. Hence, by the Chinese

Remainder Theorem, D/cD is finite for all nonzero c ∈ D.

Let c ∈ D•. By Lemma 22(c)(c) there exist, up to associativity, only finitely many

elements γ ∈ R(D) with nr(γ) ≃ c. If α ∈ R(D)• and γ|α, then nr(γ)|nr(α),
and therefore there are, up to associativity, only finitely many irreducibles that can

possibly divide α. Together with (1), this implies that every α ∈ R(D)• has only

finitely many factorizations.

If α = ( 0 b
0 0 ) ∈ R(D) is a zero-divisor, then every factorization has exactly one

factor associated to ( 0 1
0 0 ) and if γ is any other factor in the factorization then

nr(γ) | b (cf. Lemma 88(1)(1)). By the same argument as before, α has only finitely

many factorizations.

For the converse, suppose that p ∈ D is a prime element and |D/pD| = ∞. Since(
p2 0

0 p2

)
=

(
p a

0 p

)(
p −a

0 p

)
,

for all a ∈ D,
(

p2 0

0 p2

)
has infinitely many (non-associated) factorizations in R(D).

(3) Let α = ( a b
0 a ) ∈ R(D) be a nonzero nonunit. Since D is a field, by Lemma 11,

a = 0 and b ∈ U(D). Hence α is associated with I := ( 0 1
0 0 ), and so α is a prime

by the proof of Corollary 77. Thus R(D) is a UFR and IR(D) is a unique nonzero

(prime) ideal of R(D). □

If D is a PID but not a field, we will see in Corollary 1515 that R(D) is not a UFR,

even when D is the ring of integers.

We next prove that every nonunit of R(D) can be written as a (finite) product

of primary elements.

Lemma 10. Let R be a commutative ring. If a ∈ R is such that
√
aR is a maximal

ideal, then aR is primary.

Proof. Let x, y ∈ R be such that xy ∈ aR but x ̸∈
√
aR. Note that

√
aR ⊊√

aR+ xR; so aR+xR =
√
aR+ xR = R because

√
aR is a maximal ideal. Hence

1 = as+ xt for some s, t ∈ R. Thus y = y(as+ xt) = a(ys) + (xy)t ∈ aR. □

Corollary 11. If D is a PID, then every irreducible element of R(D) is primary.

In particular, each nonzero nonunit of R(D) can be written as a finite product of

primary elements.

Proof. Let α = ( a b
0 a ) ∈ R(D) be irreducible. By Theorem 55, there are three cases

that we have to consider.

Case 1. a = 0 and b ∈ U(D). By Corollary 77, α is a prime, and hence a primary

element.

Cases 2 and 3. a = upn for some prime element p ∈ D, u ∈ U(D), and n ∈ N.
By Lemma 1010, it suffices to show that

√
αR(D) is a maximal ideal. Let β =

( x y
0 x ) ∈ R(D) \

√
αR(D). Note that if δ = ( 0 d

0 0 ) ∈ R(D), then δ2 = 0, and hence
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δ ∈
√

αR(D). Hence(
x 0

0 x

)
̸∈
√
αR(D) and

(
upn 0

0 upn

)
∈
√

αR(D).

But then
( p 0
0 p

)
∈
√
αR(D). Note also that if x ∈ pD, then x = px1 for some

x1 ∈ D, and so (
x 0

0 x

)
=

(
p 0

0 p

)(
x1 0

0 x1

)
∈
√
αR(D),

a contradiction. So x ̸∈ pD, and hence xz1 + pz2 = 1 for some z1, z2 ∈ D. Thus(
1 0

0 1

)
= β ·

(
z1 0

0 z1

)
+

(
p 0

0 p

)(
z2 0

0 z2

)
+

(
0 −yz1
0 0

)
∈ βR(D) +

√
αR(D).

Therefore
√
αR(D) is maximal. □

Remark 12. In view of Corollary 1111, Corollary 44 in fact corresponds to the (unique)

primary decomposition of αR(D), as every prime ideal of R(D), except for 0(+)D,

is maximal (cf. [44, Theorem 3.2]).

Associativity is a congruence relation on (R(D)•, ·), and we denote by R(D)•red
the corresponding quotient monoid. Corollary 44 may also be viewed as a monoid

isomorphism R(D)•red
∼=
⨿

p R(D(p))
•
red, where the coproduct is taken over all asso-

ciativity classes of prime elements p of D, and D(p) is the localization at pD.

3. The sets of lengths in R(D) when D is a PID

Let D be an integral domain and R(D) = {( a b
0 a ) | a, b ∈ D}. In this section, we

characterize the sets of lengths in R(D) when D is a PID.

Lemma 13. Let D be a PID and α, β ∈ R(D).

(1) If αβ ̸= 0, then L(α) + L(β) ⊂ L(αβ).
(2) If nr(α) and nr(β) are coprime, then L(α) + L(β) = L(αβ).

Proof. (1) Clear.

(2) Let n ∈ L(αβ). Then there exist irreducible γ1, . . . , γn ∈ R(D)• such

that αβ = γ1 · . . . · γn. Then also nr(α) nr(β) = nr(γ1) · . . . · nr(γn). Since

1 ∈ GCD(nr(α),nr(β)), we may without loss of generality assume nr(α) ≃ nr(γ1) ·
. . . · nr(γk) and nr(β) ≃ nr(γk+1) · . . . · nr(γn) for some k ∈ [0, n]. By Lemma 33,

therefore α ≃ γ1 ·. . .·γk and β ≃ γk+1 ·. . .·γn, and n = k+(n−k) ∈ L(α)+L(β). □

For a prime element p ∈ D we denote by vp : D → N0 ∪ {∞} the corresponding

valuation, i.e., vp(0) = ∞ and vp(ap
k) = k if k ∈ N0 and a ∈ D• is coprime to p.

Theorem 14. Let D be a PID, α ∈ R(D) and suppose α = ( a b
0 a ) with a, b ∈ D.

(1) If a = 0, and b = pe11 · . . . · penn with pairwise non-associated prime elements

p1, . . . , pn ∈ D and e1, . . . , en ∈ N, then L(α) = [1 + n, 1 + e1 + . . .+ en].

(2) Let p ∈ D be a prime element, n ∈ N and suppose a = pn and vp(b) = k ∈
N0 ∪ {∞}. Then L(α) = { 1 } if and only if k = 0 or n = 1. If k ≥ n− 1,

then

[3, n− 2] ∪ {n } ⊂ L(α) ⊂ [2, n− 2] ∪ {n },
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and if k ∈ [1, n− 2], then

[3, k + 1] ⊂ L(α) ⊂ [2, k + 1].

Moreover, if k ≥ 1, then 2 ∈ L(α) if and only if n is even or k < n
2 .

Proof. (1) This is clear from Lemma 88(1)(1), as every factorization of b into prime

powers gives a factorization of α (choose ai = 1), and conversely.

(2) The cases k = 0 and n = 1 are clear from Theorem 55, so from now on we

assume k ≥ 1 and n > 1. Let b = upk with u ∈ D and 1 ∈ GCD(u, p). We

repeatedly make use of Lemma 88(2)(2), and the notation used there to describe a

factorization, without explicitly mentioning this fact every time.

Claim A: L(α) ⊂ [2,min{ k + 1, n }].

Proof. Because α is not an atom, 1 ̸∈ L(α). Any factorization of α is associated to

one in Lemma 88(2)(2); we fix a factorization of α with notation as in the lemma. The

length of the factorization is then t =
∑n

l=1 ml. Since
∑n

l=1 mll = n, clearly t ≤ n.

Moreover, necessarily ml = 0 for all l > n−(t−1). Since b =
∑n

l=1 p
n−l(

∑ml

j=1 al,j),

therefore k = vp(b) ≥ vp(p
n−(n−t+1)) = t− 1, i.e., t ≤ k + 1.

Claim B: 2 ∈ L(α) if and only if n is even or k < n
2 .

Proof. Suppose 2 ∈ L(α) and n is odd. Then n = l + (n − l) and b = pn−lal,1 +

plan−l,1 with 1 ∈ GCD(al,1, p) and 1 ∈ GCD(an−l,1, p). Since n is odd, then

n− l ̸= l and therefore k = vp(b) = min{n− l, l } < n
2 .

For the converse suppose first 1 ≤ k < n
2 . Then n = k + (n− k), n− k > k and

b = pn−k · 1 + pk(u− pn−2k) with 1 ∈ GCD(u− pn−2k, p). If n is even and k ≥ n
2 ,

then n = n
2 + n

2 and b = p
n
2 (1 + (upk−

n
2 − 1)) with 1 ∈ GCD(upk−

n
2 − 1, p).

Claim C: If n− 1 ∈ L(α), then k = n− 2.

Proof. For a corresponding factorization we must have m1 = n − 2, m2 = 1,

and ml = 0 for all l > 2. Then b = pn−1(a1,1 + . . . + a1,n−2) + pn−2a2,1 with

1 ∈ GCD(a2,1, p), whence k = vp(b) = n− 2.

Claim D: Let n ≥ 3 and k ≥ 2. If either k = 2 or n ̸= 4, then 3 ∈ L(α).

Proof. Suppose first that n is odd and set b′ = b/p. Then

(1) α =

(
p 0

0 p

)
α′ with α′ =

(
pn−1 b′

0 pn−1

)
,

and, by Claim B, 2 ∈ L(α′). Therefore 3 ∈ L(α).
If n is even, n ≥ 6, and k ≥ 3, then

α =

(
p2 u

0 p2

)(
pn−2 u(pk−2 − pn−4)

0 pn−2

)
,

where the first factor is irreducible and the second has a factorization of length 2

by Claim B.

If k = 2, then

α =

(
p 0

0 p

)2(
pn−2 u

0 pn−2

)
is a factorization of length 3.
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Claim E: If k ≥ n− 1, then n ∈ L(α).

Proof. We use Lemma 88(2)(2). Set m1 = n, a1,1 = upk−(n−1) and a1,2 = . . . = al,n =

0. Then pn−1(upk−(n−1) + 0 + . . .+ 0) = b.

Claim F: If k ∈ [1, n− 2], then [3, k + 1] ⊂ L(α).

Proof. If n ≤ 3 or k = 1, then the claim is trivially true, so we may assume k ≥ 2.

We proceed by induction on n. Suppose n ≥ 4, and that the claim is true for n−1.

Let b′ = b/p and let α′ be as in (11). We have vp(b
′) = k − 1 ≥ 1.

If k = 2, then 1 = k − 1 < n−1
2 , and hence 2 ∈ L(α′) (by Claim B). Therefore

{ 3 } = [3, k + 1] ⊂ { 1 }+ L(α′) ⊂ L(α).
If k ≥ 3, then by induction hypothesis, [3, k] ⊂ L(α′), and thus [4, k + 1] =

{ 1 }+ L(α′) ⊂ L(α), and by Claim D, also 3 ∈ L(α).

Claim G: If k ≥ n− 1, then [3, n− 2] ⊂ L(α).

Proof. If n ≤ 4, then the claim is trivially true. We again proceed by induction on

n. Suppose n ≥ 5 (then k ≥ 4), and that the claim is true for n− 1.

Let b′ = b/p and let α′ be as in (11). Again, vp(b
′) = k − 1 ≥ 3 and by induction

hypothesis [3, n − 3] ⊂ L(α′). Therefore [4, n − 2] ⊂ L(α) and by Claim D also

3 ∈ L(α).

If k ≥ n− 1, then the claim of the theorem follows from claims A, B, C, E and

G. If k ∈ [2, n − 2], then the claim of the theorem follows from claims A, B and

F. □

If α ∈ R(D) is a nonzero nonunit, and L(α) = { l1, l2, . . . , lk }, then the set

of distances of α is defined as ∆(α) = { li − li−1 | i ∈ [2, k] }, and ∆
(
R(D)

)
=∪

α∈R(D)\
(
{ 0 }∪U(R(D))

)∆(α). For k ∈ N≥2, set Uk

(
R(D)

)
=
∪

α∈R(D),k∈L(α) L(α).

Corollary 15. If D is a PID, but not a field, then U2

(
R(D)

)
= N≥2 and ∆

(
R(D)

)
=

{ 1, 2 }.

Proof. This follows directly from Theorem 1414. □
Corollary 16. Suppose D is a PID that has infinitely many pairwise non-associated

prime elements. Then

L(R(D)) =
{
{ 0 }, { 1 }

}
∪
{
[m,n] | m ∈ [2, n]

}
∪
{
[m,n] ∪ {n+ 2 } | m ∈ [2, n] and n even

}
∪
{
[m,n] ∪ {n+ 2 } | m ∈ [3, n] and n odd

}
∪
{
m+ 2[0, n] | with m ∈ N≥2n and n ∈ N }.

Proof. The sets { 0 } and { 1 } correspond to units and irreducibles. For zero-

divisors, the sets of lengths are discrete intervals and completely described in The-

orem 1414(1)(1). By Corollary 44 and Lemma 1313(2)(2), the sets of lengths of nonunit

non-zero-divisors are arbitrary sumsets of sets as in Theorem 1414(2)(2), i.e., of sets of

the form { 1 }, [2, n] (for n ≥ 2), [3, n] (for n ≥ 3), [2, n] ∪ {n+ 2 } for even n ≥ 2,

and [3, n] ∪ {n+ 2 } for odd n ≥ 3. □
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Finally, we remark that other important invariants of factorization theory (their

definitions readily generalize to the zero-divisor case) are easily determined for

R(D) using the characterization of sets of lengths and Corollary 44.

Corollary 17. Let D be a PID but not a field. R(D) is a locally tame ring with

catenary degree c
(
R(D)

)
= 4. In particular, ∆

(
R(D)

)
= [1, c

(
R(D)

)
− 2].

Proof. We first observe that the catenary degree (see [88, Chapter 1.6] for the defini-

tion in the non-zero-divisor case) of R(D) is 4: Let first α ∈ R(D) with nr(α) ̸= 0.

Using Corollary 44, we can reduce to the case where nr(α) is a prime power. Since

then min L(α) ≤ 3, we can argue as in bifurcus semigroups (cf. [11, Theorem 1.1]),

to find c(α) ≤ 4. In view of Lemma 88(1)(1), and with a similar argument, the catenary

degree of a zero-divisor is at most 2. Together this gives c(R(D)) ≤ 4. Since there

exists an element with set of lengths { 2, 4 }, also c(R(D)) ≥ 4.

We still have to show that R(D) is locally tame (see [88, Chapter 1.6] or [1010] for

definitions). For this we have to show t(R(D), γ) < ∞ for all irreducible γ ∈ R(D).

Let α ∈ R(D) and γ ∈ R(D) be irreducible. If γ is prime, then t(R(D), γ) = 0,

hence we may suppose that γ is associated to one of the non-prime irreducibles

from Theorem 55, and hence there exist a prime element p ∈ D and n ∈ N such

that nr(γ) = pn. If α ∈ R(D) is a zero-divisor, then t(α, γ) = n follows easily from

Lemma 88(1)(1).

A standard technique allows us to show t(R(D)•, γ) < ∞: By [1010, Proposition

3.8], it suffices to show that two auxiliary invariants, ω(R(D)•, γ) and τ(R(D)•, γ)

are finite.

Suppose I ⊂ (R(D)•, ·) is a divisorial ideal. If we denote by R(D)⟨I⟩ the ideal

of R(D) generated by I, one checks that R(D)⟨I⟩ ∩ R(D)• = I. Since R(D) is

noetherian, R(D)• is therefore v-noetherian. By [1010, Theorem 4.2], ω(R(D)•, γ) is

finite.

Recalling the definition of τ(α, γ) (from [1010, Definition 3.1]), it is immediate from

Theorem 1414 together with Corollary 44, that τ(R(D)•, γ) ≤ 3. Altogether, therefore

t(R(D), γ) < ∞. □

Remark 18. Suppose D is a PID but not a field.

(1) Trivially, Theorem 1414(2)(2) holds true for R(D)•.

(2) Let K be the quotient field of D, and H = R(D)•. We have

H =

{(
a b

0 a

) ∣∣∣∣ b ∈ D, a ∈ D•

}
,

and the complete integral closure of H is equal to

Ĥ =

{(
a b

0 a

) ∣∣∣∣ b ∈ K, a ∈ D•

}
because (

a b

0 a

)n

=

(
an nan−1b

0 an

)
for all a, b ∈ K and n ∈ N. This shows H ̸= Ĥ, and even more we have

f = (H : Ĥ) = ∅ (note that (D : K) = ∅). Thus the monoid under
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discussion is neither a Krull nor a C-monoid, which have been extensively

studied in recent literature (see [88, Chapters 2.9, 3.3, and 4.6], [99], [1212]).
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