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We associate lattices to the sets of unions and intersections of left and right quotients of a regular
language. For both unions and intersections, we show that the lattices we produce using left and
right quotients are dual to each other. We also give necessary and sufficient conditions for these
lattices to have maximal possible complexity.

Within the study of formal languages, a common theme is associating invariants that provide a mea-
sure of complexity of the language. A key example of this type is the entropy of languages (cf. Chomsky
and Miller [4]), which gives a measure of their growth.

When one restricts to regular languages, one of the most essential notions of complexity comes from
the observation that, given a finite alphabet Σ and a language L ⊆ Σ∗, the language L is regular if and
only if the number of distinct left quotients is finite, where a left quotient of L by a word w ∈ Σ∗ is the
language

w−1L = {x ∈ Σ
∗:wx ∈ L}.

In this sense, the number of distinct left quotients of a regular language provides a measure of its com-
plexity (see the survey article [1] and references therein for more on quotient complexity). One can
analogously define the right quotient of a language L by a word v ∈ Σ∗ to be the language

Lv−1 = {u ∈ Σ
∗:uv ∈ L},

and one again has that regularity is equivalent to there being only finitely many distinct right quotients.
In particular, this gives an analogous notion of complexity. It should be noted, however, that these
two notions of complexity do not coincide. For example, if Σ = {a,b} and L = {ε,a,a2,ba}, then the
left quotients of L are the languages L,{ε,a},{a},{ε},∅, while the right quotients are the languages
L,{ε,a,b},{ε},∅.

The purpose of this paper is to show that when one instead forms lattices1 associated with the left
and right quotients of a regular language in a natural way, then a duality arises that provides a left-right
symmetric measure of the complexity of the language in terms of quotients. To make this precise, we ob-
serve that if L ⊆ Σ∗ is a regular language with left quotients L0, . . . ,Ln−1 and right quotients R0, . . . ,Rm−1,
then one can consider the following four lattices.
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1A lattice is simply a partially ordered set (Λ,⩽) with the property that finite subsets have unique least upper bounds and

unique greatest lower bounds; thus lattices have a join, ∨, and meet, ∧, which are binary operations corresponding to taking
respectively the least upper bound and greatest lower bound of two elements of L.
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• The left quotient union lattice, Latt(L,∪,L):

the lattice whose elements are all sets that can be formed by taking a (possibly empty) union of
left quotients L0, . . . ,Ln−1.

• The right quotient union lattice, Latt(L,∪,R):

the lattice whose elements are all sets that can be formed by taking a (possibly empty) union of
right quotients R0, . . . ,Rm−1.

• The left quotient intersection lattice, Latt(L,∩,L):

the lattice whose elements are all sets that can be formed by taking a (possibly empty) intersection
of left quotients L0, . . . ,Ln−1.

• The right quotient intersection lattice, Latt(L,∩,R):

the lattice whose elements are all sets that can be formed by taking a (possibly empty) intersection
of right quotients R0, . . . ,Rm−1.

We observe that the above sets are partially ordered by inclusion and have a join operation, ∨, and a meet
operation, ∧. In the case of Latt(L,∪,L) and Latt(L,∪,R), the join of A and B is the union and the meet
is the union of all elements of the set that are contained in A∩B, where an empty union is the empty
set. These two lattices have a unique smallest element (the empty set, which is the empty union) and a
unique largest element, consisting of the union of all left (respectively right) quotients.

Similarly, in the case of Latt(L,∩,L) and Latt(L,∩,R), the meet is just the intersection and the join
of two intersections of quotients, A and B, is the intersection of all quotients that contain the union
A ∪ B, where an empty intersection is taken to be Σ∗. Then these two lattices again have a unique
maximal element Σ∗ and a unique minimal element given by the intersection of all left (respectively
right) quotients.

As a simple example, consider again the finite regular language L = {ε,a,a2,ba} ⊆ {a,b}∗. Then
the left quotients are the languages

L0 = {ε,a,a2,ba}, L1 = {a}, L2 = {ε,a}, L3 = {ε}, L4 =∅ (1)

while the right quotients are

R0 =∅, R1 = {ε}, R2 = {ε,a,b}, R3 = {ε,a,a2,ba} (2)

and we construct the four lattices we consider in this paper from these left and right quotients of
{ε,a,a2,ba} in Figures 1 and 2.

Figures 1 and 2 hint at an unexpected duality. We recall that if Λ is a lattice, then we have a dual
lattice Λ∗, which is Λ as a set, but where the partial order on Λ is reversed and the meet and join are
exchanged. Intuitively, one can think of this as simply taking the lattice Λ and writing it “upside-down”;
in particular, the two lattices in Figure 1 are duals of each other and similarly for the two lattices in Figure
2.

We recall that two lattices Λ and Λ′ are isomorphic (written Λ ∼= Λ′) if there is a bijection f : Λ → Λ′

such that x < y in Λ if and only if f (x)< f (y) in Λ′ and such that f (x∨ y) = f (x)∨ f (y) and f (x∧ y) =
f (x)∧ f (y) for all x,y ∈ Λ. Our main theorem shows that the duality occurring in Figures 1 and 2 is part
of a general phenomenon.
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Figure 1: The lattices Latt(L,∪,L) (left) and Latt(L,∪,R) (right) for L = {ε,a,a2,ba}.
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Figure 2: The lattices Latt(L,∩,L) (left) and Latt(L,∩,R) (right) for L = {ε,a,a2,ba}.

Theorem 1. Let L ⊆ Σ∗ be a regular language. Then we have:

(a) Latt(L,∪,L) is isomorphic to the dual lattice of Latt(L,∪,R);

(b) Latt(L,∩,L) is isomorphic to the dual lattice of Latt(L,∩,R).

We note that the isomorphism given in Theorem 1(b), while not stated, can be obtained from the work
of Im and Khovanov [5], if one carefully analyzes their constructions. In particular, it would also be
interesting to know whether the isomorphism in Theorem 1(a) has any relevance to one-dimensional
topological theories.

The outline of this paper is as follows. In §1 we give an overview of the basic concepts needed from
the theory of finite-state automata. In §2 we give an overview of the theory of atoms of regular languages
and in §3 we describe a key relationship between quotients and atoms. In §4 and §5 we give the proof
of Theorem 1(a) and (b) respectively. In §6 we relate our results to Boolean semimodules and describe
the duality algebraically. Finally, in §7 we give a brief analysis of when the lattices we construct are of
maximal possible complexity.

1 Preliminaries

In this brief section, we give an overview of the key concepts from automata theory that we will make
use of in proving Theorem 1.
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A nondeterministic finite automaton (NFA) is a quintuple

N = (Q,Σ,δ , I,F),

where Q is a finite, non-empty set of states, Σ is a finite non-empty alphabet, δ : Q×Σ → 2Q is the
transition function, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. We can naturally
extend the transition function to functions

δ
′ : Q×Σ

∗ → 2Q
δ
′′ : 2Q ×Σ

∗ → 2Q,

which corresponds to taking elements of Σ∗ as input for our automata and read them left-to-right to
determine whether or not they are accepted; we henceforth use δ to denote all of these functions.

The left language of a state q of N is

{w ∈ Σ
∗:q ∈ δ (I,w)}, (3)

and the right language of q is
{w ∈ Σ

∗:δ (q,w)∩F ̸=∅}. (4)

A state q of N is reachable if its left language is non-empty, and it is empty if its right language is empty.
The language accepted by an NFA N is L(N ) = {w ∈ Σ∗:δ (I,w)∩F ̸=∅}, and we say that two NFAs
are equivalent if they accept the same language. The reverse of an NFA N = (Q,Σ,δ , I,F) is the NFA
N R = (Q,Σ,δ R,F, I), where q ∈ δ R(p,a) if and only if p ∈ δ (q,a) for p,q ∈ Q and a ∈ Σ. The reverse
of an NFA N accepts the reverse of the language accepted by N .

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ,δ ,q0,F), where Q, Σ, and F are as
in an NFA, δ : Q×Σ → Q is the transition function, and q0 is the initial state.

We recall that a language L is regular if it is accepted by some DFA (or equivalently by an NFA). It
is well known that the left quotients of the language L are precisely the right languages of the states of a
minimal DFA for L. Any NFA N can be determinized by the well-known subset construction, yielding
a DFA N D that has only reachable states. We note that one can iteratively perform the reverse and
determinization procedures; indeed, this plays a key role in the fundamental work of Brzozowski [2],
and the following result is a slightly modified version of his work.

Proposition 2. If an NFA N has no empty states and N R is deterministic, then N D is a minimal DFA.

We note that by Proposition 2, for any NFA N , the DFA N RDRD is the minimal DFA equivalent to
N ; this result is known as Brzozowski’s double-reversal method for DFA minimization.

2 Atoms of a regular language

Let L be a non-empty regular language with left quotients L0, . . . ,Ln−1. Given a subset S ⊆ {0, . . . ,n−1}
we can form a left atomic intersection

IS :=

(⋂
i∈S

Li

)
∩

 ⋂
j∈{0,...,n−1}\S

L j

 , (5)

where Li is the complement of Li in Σ∗.
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A non-empty left atomic intersection is called a left atom of L [3].2 A left atom is initial if it is
contained in L and it is final if it contains the empty word ε . There is exactly one final left atom; namely
the atom IT where T is the set of i for which ε ∈ Li.

If L0 ∩ ·· · ∩Ln−1 is a left atom, then it is called the negative atom, with all other left atoms called
positive. Thus left atoms of L are pairwise disjoint languages uniquely determined by L and they define
a partition of Σ∗.

One can do an analogous construction on the right: if R0, . . . ,Rm−1 are the right quotients of L then
for each subset T ⊆ {0, . . . ,m−1} we can form a right atomic intersection

JT :=

(⋂
i∈T

Ri

)
∩

 ⋂
j∈{0,...,m−1}\T

R j

 , (6)

and we define right atoms of L to be the non-empty right atomic intersections.
As an example, if we take L = {ε,a,a2,ba} then the left atoms in this case are given by the partition

A0 = {ε,a,a2,ba}, A1 = {a2,ba}, A2 = {a}, A3 = {ε} (7)

of Σ∗. These left atoms can be expressed as left atomic intersections as follows:

{ε,a,a2,ba}= {ε,a,a2,ba}∩{a}∩{ε,a}∩{ε}∩∅= L0 ∩L1 ∩L2 ∩L3 ∩L4, (8)

{a2,ba}= {ε,a,a2,ba}∩{a}∩{ε,a}∩{ε}∩∅= L0 ∩L1 ∩L2 ∩L3 ∩L4, (9)

{a}= {ε,a,a2,ba}∩{a}∩{ε,a}∩{ε}∩∅= L0 ∩L1 ∩L2 ∩L3 ∩L4, (10)

and
{ε}= {ε,a,a2,ba}∩{a}∩{ε,a}∩{ε}∩∅= L0 ∩L1 ∩L2 ∩L3 ∩L4. (11)

Here, the left atom {ε,a,a2,ba} is negative, while the remaining left atoms are both positive and
initial and the left atom {ε} is the unique final atom.

On the other hand, the right atoms are given by the partition

B0 = {ε}, B1 = {b}, B2 = {a}, B3 = {ba,a2}, B4 = {ε,a,a2,b,ba}, (12)

and they are obtained as right atomic intersections as

{ε}=∅∩{ε}∩{ε,a,b}∩{ε,a,a2,ba}= R0 ∩R1 ∩R2 ∩R3, (13)

{b}=∅∩{ε}∩{ε,a,b}∩{ε,a,a2,ba}= R0 ∩R1 ∩R2 ∩R3, (14)

{a}=∅∩{ε}∩{ε,a,b}∩{ε,a,a2,ba}= R0 ∩R1 ∩R2 ∩R3, (15)

{ba,a2}=∅∩{ε}∩{ε,a,b}∩{ε,a,a2,ba}= R0 ∩R1 ∩R2 ∩R3, (16)

and
{ε,a,a2,b,ba}=∅∩{ε}∩{ε,a,b}∩{ε,a,a2,ba}= R0 ∩R1 ∩R2 ∩R3. (17)

2In the literature, one generally just uses the term atom when speaking of what we call left atoms. However, to achieve our
duality results it is convenient to use the adjective left when speaking of atoms obtained from left quotients.
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Figure 3: The átomaton (left) and the minimal DFA (right) for L = {ε,a,a2,ba}.

We note that every left quotient of L (including L itself) is a (possibly empty) union of left atoms and
similarly every right quotient is a union of right atoms.

It is well known that left quotients of L are in a one-to-one correspondence with the equivalence
classes of the Nerode right congruence ≡L of L [8] defined as follows: for x,y ∈ Σ∗, x ≡L y if for every
v ∈ Σ∗, xv ∈ L if and only if yv ∈ L. Left atoms of L are the classes of the left congruence L≡ of L:
for x,y ∈ Σ∗, x L≡ y if for every u ∈ Σ∗, ux ∈ L if and only if uy ∈ L [6]. Also, right quotients are in a
one-to-one correspondence with the equivalence classes of the left congruence.

Let A0, . . . ,Am−1 denote the left atoms of L where we index so that Am−1 is the final atom, and let I
denote the set of initial atoms.

The átomaton A of L is the NFA whose set of states is the set

S = {s0, . . . ,sm−1}, (18)

which can be thought of as parameterizing the set of left atoms of L. More precisely, we take

A = (S,Σ,α, I,{sm−1}),

where s j ∈ α(si,a) if and only if A j ⊆ a−1Ai, for i, j ∈ {0, . . . ,m−1} and a ∈ Σ. (We refer the reader to
[3] for further details on átomata.)

In the running example in which we take L = {ε,a,a2,ba}, by Equation (7), the left atoms are the
sets

A0 = {ε,a,a2,ba}, A1 = {a2,ba}, A2 = {a}, A3 = {ε},

and we see that the átomaton associated to L is given in Figure 3 on the left, where the states s1,s2,s3 are
initial.

Observe that if we adopt the labelling given in Equations (2) and (7), then the right languages of the
átomaton in Figure 3 are

A0 = {a,b}∗ ·
(
{b}∪{a,b}2 · {a}

)
= {ε,a,a2,ba}

(for the state s0), A1 = {a2,ba} (for the state s1), A2 = {a} (for the state s2), and A3 = {ε} (for the state
s3), which are precisely the left atoms of the language given in Equation (7).
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On the other hand, the left languages are R0 = ∅ (for the state s0), R1 = {ε} (for the state s1),
R2 = {ε,a,b} (for the state s2), R3 = {ε,a,a2,ba} (for the state s3), and these are precisely the right
quotients of L, as given in Equation (2).

In fact, these observations are part of general phenomena, as shown by Brzozowski and Tamm [3],
which we record in the following proposition.

Proposition 3. Let L be a non-empty regular language. Then the following hold:

(i) the left quotients of L are precisely the right languages of the minimal DFA accepting L;

(ii) the left atoms of L are precisely the right languages of the átomaton A associated to L;

(iii) the right quotients of L are precisely the left languages of A ;

(iv) the right atoms of L are precisely the left languages of the minimal DFA accepting L.

In particular, we have set bijections

{left atoms of L}↔ {right quotients of L}

and
{right atoms of L}↔ {left quotients of L},

where in the first case we view a left atom of L as the right language of a state of A and then send it to
the left language of this state and in the second case we view a right atom of L as the left language of a
state of the minimal DFA of L and then send it to the right language of this state.

Proof. Item (i) is well known. It was shown in [3] that the left atoms of a regular language L are precisely
the right languages of the states of the associated átomaton, so (ii) holds.

A modification of the isomorphism result from [3] shows that if D is the minimal DFA accepting L
with state set Q = {q0,q1, . . . ,qn−1}, then the átomaton, A , associated to L is isomorphic to DRDR as
NFAs, via an isomorphism induced by the map which sends a state si ∈ S from the state set of A to the
set {q j: j ∈ S}, where S ⊆ {0, . . . ,n−1} has the property that Ai is the left atomic intersection IS. Since
by Proposition 2, the DFA DRD is the minimal DFA of the reverse language of L, the left languages of
DRDR ∼= A are exactly the right quotients of L, which establishes (iii).

Finally, [3] shows that the reverse NFA of the átomaton of L is the minimal DFA of the reverse
language of L, and so (iv) now follows, and the bijections are immediate from (i)–(iv). □

We again consider the regular language L = {ε,a,a2,ba} as an example. Then the automaton in
Figure 3 on the right is the minimal DFA accepting L with the state set {q0,q1,q2,q3,q4}.

Observe that for this DFA, if we adopt the labellings from Equations (1) and (12), the left language
of q0 is B0 = {ε} and the right language is L0 = L; the left language of q1 is the right atom B1 = {b}
and the right language is the left quotient L1 = {a}; the left language of q2 is B2 = {a} and the right
language is L2 = {ε,a}; the left language of q3 is B3 = {ba,a2} and the right language is L3 = {ε}; and
finally the left language of q4 is B4 = ({ab,b2}∪{a2,ba}{a,b}){a,b}∗ = {ε,a,b,a2,ba} and the right
language is L4 =∅. Similarly, the remarks preceding Proposition 3 give the bijection between left atoms
and right quotients. We record these bijections in Figure 4, where A is the átomaton and D is the DFA
from Figure 3.
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State of D Left quotient of {ε,a,a2,ba} Right atom of {ε,a,a2,ba}

q0 {ε,a,a2,ba} {ε}

q1 {a} {b}

q2 {ε,a} {a}

q3 {ε} {ba,a2}

q4 ∅ {ε,a,b,a2,ba}

State of A Right quotient of {ε,a,a2,ba} Left atom of {ε,a,a2,ba}

s0 ∅ {ε,a,a2,ba}

s1 {ε} {a2,ba}

s2 {ε,a,b} {a}

s3 {ε,a,a2,ba} {ε}

Figure 4: Tables giving the bijections described in Proposition 3 between left quotients and right atoms
and between right quotients and left atoms for the language L = {ε,a,a2,ba}.

3 Relationships between quotients and atoms

In this section, we give key bijections between left quotients and right atoms and similarly for right
quotients and left atoms.

We find it convenient to introduce notation that we will use in proving Theorem 1. The main aim
of this notation is to capture the isomorphisms described in Proposition 3 and we henceforth adopt this
notation in all results we prove.

Notation 4. We introduce the following notation.

(i) We let L be a non-empty regular language in Σ∗ with Σ a finite alphabet.

(ii) We let A denote the átomaton of L and let D denote the minimal DFA accepting L on states
q0, . . . ,qn−1.

(iii) We let L0, . . . ,Ln−1 denote the left quotients of L.

(iv) We let R0, . . . ,Rm−1 denote the right quotients of L.

(v) We let A0, . . . ,Am−1 denote the left atoms of L, where we index so that Ai corresponds to Ri under
the bijection given in Proposition 3.

(vi) We let B0, . . . ,Bn−1 be the right atoms of L, where we index so that Bi corresponds to Li under the
bijection given in Proposition 3.

Remark 5. We note that in our running example where L = {ε,a,a2,ba}, this notation is consistent with
the labellings given in Equations (1), (2), (7), and (12), as shown by Figure 4.
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The following proposition gives a precise relationship between the left and right quotients of a regular
language L and the left and right atoms of L.

Proposition 6. Let i ∈ {0, . . . ,m−1}, and let j ∈ {0, . . . ,n−1}. Then

Ri =
⋃

{k:Ai⊆Lk}
Bk and L j =

⋃
{ℓ:B j⊆Rℓ}

Aℓ.

In particular, Ai ⊆ L j if and only if B j ⊆ Ri.

Proof. As noted in the proof of Proposition 3, the modified argument of [3] shows that the NFAs A and
DRDR are isomorphic, with a state si in A corresponding to a set {qi: i∈ S} for some set S⊆{0, . . . ,n−1}
with the property that the left atom Ai is the (left) atomic intersection IS described in Equation (5). By
Proposition 3, the right quotients of L are the left languages of DRDR and right atoms of L are the left
languages of D . This then gives that the first equality holds.

The second equality is proved analogously, now using that left quotients of L are right languages of
D and left atoms of L are the right languages of A ∼= DRDR by Proposition 3. The “in particular” clause
follows immediately from these equalities. □

Lemma 7. Let X be a union of left atoms of L, and let Y be a union of right atoms of L. Then we have:

(1)
⋃

{i:Ai ̸⊆X} Ri =
⋃

{ j:L j ̸⊆X} B j,

(2)
⋂

{ j:A j⊆X} R j =
⋃

{i:X⊆Li} Bi,

(3)
⋃

{i:Bi ̸⊆Y} Li =
⋃

{ j:R j ̸⊆Y} A j,

(4)
⋂

{ j:B j⊆Y} L j =
⋃

{i:Y⊆Ri} Ai.

Proof. We consider the union of the right quotients U =
⋃

Ai ̸⊆X Ri, corresponding to the left atoms not
contained in X .

Consider a left quotient L j that is not contained in X . Then there is some left atom Ai such that
Ai ⊆ L j and Ai ̸⊆ X . By Proposition 6, Ai ⊆ L j gives that B j ⊆ Ri, and hence U contains all right atoms
B j such that L j is not a subset of X , and so U contains

⋃
{ j:L j ̸⊆X} B j.

On the other hand, if L j ⊆ X and Ai ̸⊆ X , then Ai ̸⊆ L j, which by Proposition 6 gives that B j ̸⊆ Ri.
Hence, B j ̸⊆U if L j ⊆ X , and so we get the reverse containment, establishing (1).

By Proposition 6 we see that for each left quotient Li, the inclusion X ⊆ Li holds if and only if
Bi ⊆

⋂
{ j:A j⊆X} R j holds and so we obtain (2).

The proofs of (3) and (4) are done similarly to (1) and (2). □

A convenient tool for capturing much of this information comes from the quotient-atom matrix [7, 9].
If we adopt the notation of Notation 4, then this matrix is the n×m zero-one matrix whose (i, j)-entry
(where we start our indices at zero) is 1 exactly when i ∈ S, where S ⊆ {0,1, . . . ,n−1} is the set giving
the left atom A j as a left atomic intersection IS. Equivalently, this is the case when A j ⊆ Li.

In the case that L is the regular language {ε,a,a2,ba}, the left quotients and left atoms are given
in Equations (1) and (7), and the expressions for left atoms as left atomic intersections are given in
Equations (8)–(11). Using these data, we see that the quotient-atom matrix for L = {ε,a,a2,ba} is given
in Figure 5.

We note that one can do an analogous construction with right atoms and right quotients and one will
then obtain the transpose of the quotient-atom matrix. The quotient-atom matrix allows one to understand
non-empty intersections of non-empty sets of left and right quotients in terms of maximal grids of the
quotient-atom matrix [7, 9].
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0 1 1 1
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0

 (19)

Figure 5: The quotient-atom matrix for L = {ε,a,a2,ba}.

4 The isomorphism Latt(L,∪,L)∼= Latt(L,∪,R)∗

In this section, we give the proof of Theorem 1(a).
We define a set map

Ψ : Latt(L,∪,L)→ Latt(L,∪,R) (20)

by declaring that for X ∈ Latt(L,∪,L),

Ψ(X) :=
⋃

{i:Ai ̸⊆X}
Ri. (21)

We can similarly define a map

Ψ
′ : Latt(L,∪,R)→ Latt(L,∪,L), (22)

where for Y ∈ Latt(L,∪,R), we define

Ψ
′(Y ) :=

⋃
{i:Bi ̸⊆Y}

Li. (23)

We shall show that the maps Ψ and Ψ′ are inverses of each other and that Ψ induces a lattice isomorphism
between Latt(L,∪,L) and Latt(L,∪,R)∗.

To continue with the example when L = {ε,a,a2,ba}, it can be checked that the map Ψ is defined by
the assignments Ψ(∅) = {ε,a,a2,b,ba}, Ψ({ε}) = {ε,a,b}, Ψ({a}) = {ε,a,a2,ba}, Ψ({ε,a}) = {ε},
and Ψ({ε,a,a2,ba}) =∅, which is capturing the dual structure of the lattices in Figure 1.

Lemma 8. Let Ψ and Ψ′ be the maps defined in Equations (21) and (23). Then Ψ and Ψ′ are set-
theoretic inverses of each other.

Proof. Let X ∈ Latt(L,∪,L). Then Y := Ψ(X) is the union of all Ri such that Ai ̸⊆ X . Using Lemma 7
we then see

Ψ(X) =
⋃

{ j:L j ̸⊆X}
B j. (24)

Then Ψ′(Y ) =
⋃

Bk ̸⊆Y Lk. Since right atoms are disjoint, from Equation (24) we see that B j is not a subset
of Y if and only if L j ⊆ X . Thus Ψ′(Y ) is the union of all left quotients L j contained in X , which is
precisely X as X is a union of left quotients.

The fact that Ψ◦Ψ′ is the identity of Latt(L,∪,R) is proved with a symmetric argument, again using
Lemma 7. □

Lemma 9. Let Ψ and Ψ′ be the maps defined in Equations (21) and (23). If U1 and U2 are unions of left
quotients of L, then the following hold:
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(1) U1 ⊆U2 ⇐⇒ Ψ(U2)⊆ Ψ(U1);

(2) Ψ(U1 ∪U2) is the largest union of right quotients that is contained in the intersection Ψ(U1)∩
Ψ(U2);

(3) if V is the largest union of left quotients contained in U1 ∩U2, then Ψ(V ) = Ψ(U1)∪Ψ(U2).

Proof. It is immediate from the definition that if U1 ⊆ U2 then Ψ(U2) ⊆ Ψ(U1). Similarly, if V1 and V2
are unions of right quotients of L, then if V2 ⊆V1 then Ψ′(V1)⊆ Ψ′(V2). Taking Vi = Ψ(Ui) for i = 1,2,
by Lemma 8, if Ψ(U2)⊆ Ψ(U1) then U1 ⊆U2, which establishes (1).

To see (2), observe that since Ψ reverses inclusions, we have Ψ(U1 ∪U2) ⊆ Ψ(U1)∩Ψ(U2). Now
suppose that Ri is a right quotient that is contained in Ψ(U1)∩Ψ(U2). Then since Ψ reverses inclusions
and Ψ′ is the inverse of Ψ, we have that Ψ′ also reverses inclusions and so Ψ′(Ri)⊇U1 since Ri ⊆ Ψ(U1),
and similarly Ψ′(Ri) ⊇ U2. Hence Ψ′(Ri) ⊇ U1 ∪U2 and so applying Ψ and using once more that it
reverses inclusions, we see that Ri is contained in Ψ(U1 ∪U2). Thus Ψ(U1 ∪U2) is the largest union of
right quotients contained in Ψ(U1)∩Ψ(U2), which shows (2).

We now prove (3). Let V be the union of all left quotients contained in U1 ∩U2. Then since Ψ

reverses inclusions, we have Ψ(V ) ⊇ Ψ(U1) and similarly Ψ(V ) ⊇ Ψ(U2), which shows that Ψ(V ) ⊇
Ψ(U1)∪Ψ(U2). To show equality, notice that if Ψ(V ) strictly contains Ψ(U1)∪Ψ(U2), then there is
some right atom Bk contained in Ψ(V ) that is neither contained in Ψ(U1) nor in Ψ(U2). Then since
Bk ⊆ Ψ(V ), we have Lk ̸⊆ V by Equation (21) and Lemma 7. But the fact that Bk is not contained in
Ψ(U1) gives that Lk ⊆U1 and similarly Lk ⊆U2. Hence Lk ⊆U1 ∩U2. But this contradicts the fact that
we chose V to be the union of left quotients contained in U1 ∩U2. Thus we get (3). □

Proof of Theorem 1(a). The fact that Ψ gives a poset isomorphism between the lattice Latt(L,∪,L) and
the dual lattice Latt(L,∪,R)∗ follows from Lemmas 8 and 9 (1). Lemma 9 (2) and (3) show that Ψ

preserves respectively the meet and join operations on these posets, as described in the definitions. □

5 The isomorphism Latt(L,∩,L)∼= Latt(L,∩,R)∗

The aim of this section is to prove Theorem 1(b) involving intersections of left and right quotients.
We now define maps

Φ : Latt(L,∩,L)→ Latt(L,∩,R) (25)

and
Φ

′ : Latt(L,∩,R)→ Latt(L,∩,L) (26)

as follows. If X ∈ Latt(L,∩,L), we define

Φ(X) =
⋂

A j⊆X

R j, (27)

and if Y is an intersection of right quotients of L, we define

Φ
′(Y ) =

⋂
B j⊆Y

L j. (28)

The following lemmas can be proved in a similar manner to the method of proof for Lemmas 8 and 9.

Lemma 10. Let Φ and Φ′ be the maps defined in Equations (27) and (28). Then Φ and Φ′ are set-
theoretic inverses of each other.
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Lemma 11. Let Φ and Φ′ be the maps defined in Equations (27) and (28). If U1 and U2 are intersections
of left quotients of L, then the following hold:

(1) U1 ⊆U2 ⇐⇒ Φ(U2)⊆ Φ(U1);

(2) Φ(U1 ∩U2) is the smallest intersection of right quotients that contains the union Φ(U1)∪Φ(U2);

(3) if V is the smallest intersection of left quotients that contains U1∪U2, then Φ(V ) =Φ(U1)∩Φ(U2).

Proof of Theorem 1(b). This is proved similarly to Theorem 1(a), but where we now use Lemmas 10 and
11. □

6 Semimodules and semilattices

In this section, we reinterpret our results algebraically and note connections with work of Im and Kho-
vanov [5].

Let B denote the Boolean semiring, which is the set {0,1} endowed with binary operations + and ·
as in the tables from Figure 6.

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

Figure 6: Addition and multiplication tables for the Boolean ring B.

A Boolean semimodule M is a commutative monoid (written additively and with an identity element
0M) equipped with a scalar multiplication map

· : B×M → M

satisfying
1 ·m = m for all m ∈ M, 0 ·m = 0M for all m ∈ M and b · (m+ n) = b ·m+ b · n and (b+ c) ·m =

b ·m+ c ·m for all b,c ∈ B and all m,n ∈ M.
In particular, if M is a Boolean semimodule then for m ∈ M we have m+m = (1+1) ·m = 1 ·m = m,

and so all elements of M are idempotent. A Boolean semimodule can be viewed as a join-semilattice
(that is a partially ordered set in which any two elements have a least upper bound) as follows. Given a
Boolean semimodule M we can define a partial order ⩽ on M by declaring that m⩽ n whenever m+n= n.
We can then define a join operation on M by declaring that m∨n := m+n. It is straightforward to check
that this gives M the structure of a join semilattice. Conversely, given a join semilattice Λ with a least
element m0, one can endow Λ with the structure of a Boolean semimodule by taking the join operation
to be addition and taking m0 to be the zero element. In the case, that we have a finite semimodule M,
then M is in fact a lattice with meet defined by taking m∧n to be the join of all elements q that are less
than or equal to both m and n, and with unique maximal element given by taking the join of all elements
of the lattice.

Given a Boolean semimodule M, one has a dual module M∗ = HomB(M,B), where HomB(M,B) is
the set of B-linear maps from M to B. We observe that M∗ is itself a Boolean semimodule, since we can
add maps and have a zero map. We then have a natural B-bilinear pairing ⟨ , ⟩ : M ×M∗ → B given by
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⟨m, f ⟩= f (m) for m ∈ M and f ∈ M∗. For a finite Boolean semimodule M, viewed as a semilattice, M∗

is just the dual semilattice of M.
We note that for a finite alphabet Σ, we can construct the Boolean lattice Bool(Σ) := 2Σ∗

, consisting
of subsets of Σ∗ partially ordered by inclusion and where meet and join are given by intersection and
union respectively. Then given a regular language L ⊆ Σ∗, we have a B-bilinear map, which we call the
Im-Khovanov pairing with respect to L,

⟨ , ⟩L : Bool(Σ)×Bool(Σ)→ B

defined by

⟨A,B⟩L =

{
1 if there exists w ∈ A,v ∈ B such that wv ∈ L;
0 otherwise,

(29)

for A,B ⊆ Σ∗. From its definition, this is easily seen to be B-bilinear and this pairing appears in the work
of Im and Khovanov [5, §4].

For the remainder of this section, we adopt the notation of Notation 4 and let ⟨ , ⟩ denote the Im-
Khovanov pairing with respect to L. Then by Proposition 3, Bi is the left language of a state qi of the
minimal DFA accepting L, and Li is the corresponding right language of qi. Therefore, ⟨Bi,A j⟩ = 1 if
and only if A j ∩ Li ̸= ∅. Similarly, using the átomaton of L, we obtain that the property ⟨Bi,A j⟩ = 1
is equivalent to Bi ∩R j ̸= ∅. On the other hand, left quotients are unions of left atoms and left atoms
are disjoint, and so A j ∩Li is non-empty if and only if A j ⊆ Li, and we have an analogous fact for right
quotients and right atoms. Hence, we have the equivalences

⟨Bi,A j⟩= 1 ⇐⇒ Bi ⊆ R j ⇐⇒ A j ⊆ Li, (30)

which can be thought of as an algebraic reformulation of Proposition 6. In general, if X is a union of
left atoms, then we have ⟨Bi,X⟩ = 0 ⇐⇒ X ∩ Li = ∅, and if Z is a union of right atoms, we have
⟨Z,A j⟩= 0 ⇐⇒ Z ∩R j =∅.

The pairing ⟨ , ⟩ restricts to pairings

⟨ , ⟩ : Latt(L,∪,R)×Latt(L,∪,L)→ B

and
⟨ , ⟩ : Latt(L,∩,R)×Latt(L,∩,L)→ B.

We now give a description of the maps Ψ and Φ from Equations (21) and (27) in terms of the Im-
Khovanov pairing. In order to express this, for a subset Y of Σ∗, we let Y⊥ denote the orthogonal
complement of Y , which is the subset of Σ∗ consisting of words w with the property that ⟨Y,{w}⟩= 0.

Proposition 12. Let Ψ and Φ be the maps given in Equations (21) and (27). Then we have the following:

(1) for X a union of left quotients, Ψ(X) =
⋃

{k:⟨Bk,X⟩=1} Bk;

(2) for Z an intersection of left quotients, Φ(Z) =
⋃

{k : Z∩B⊥
k =∅} Bk.

Proof. Let X be a union of left quotients. Then by Equation (21),

Ψ(X) =
⋃

{ j:A j ̸⊆X}
R j.

Since each right quotient is a union of right atoms, and since right atoms are disjoint, we see that Ψ(X)
is uniquely expressible as a union of right atoms. Then Bk ⊆ Ψ(X) if and only if there is some j such
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that A j ̸⊆ X and Bk ⊆ R j. Notice that since X is a union of left atoms, A j ̸⊆ X if and only if A j ⊆ X ,
and so we see by Equation (30) that Bk ⊆ Ψ(X) if and only if there is an index j such that A j ⊆ X and
⟨Bk,A j⟩= 1. Finally, bilinearity of our pairing says that

Bk ⊆ Ψ(X) ⇐⇒ ⟨Bk,X⟩= 1.

This completes the proof of (1).
Next let Z be an intersection of left quotients. Then by Equation (27) we have

Φ(Z) =
⋂

{ j:A j⊆Z}
R j.

Notice that since right atoms are disjoint and since each right quotient is a union of right atoms, Bk ⊆
Φ(Z) if and only if Bk ⊆ R j for all j such that A j ⊆ Z. Again, by Equation (30), this is equivalent to
⟨Bk,A j⟩= 1 for all j such that A j ⊆ Z. Notice that ⟨Bk,A j⟩= 1 if and only if A j is completely contained in
Lk, and hence if ⟨Bk,A j⟩= 1, then ⟨Bk,Y ⟩= 1 for all non-empty subsets Y of A j. Hence this is equivalent
to saying that Z does not intersect the orthogonal complement of Bk, and so the result follows. □

One can also interpret the quotient-atom matrix in terms of the Im-Khovanov pairing, if one views
the entries of the matrix as living in the Boolean semiring B. For the quotient-atom matrix, the (i, j)-
entry is 1 if Li appears in the atomic intersection giving A j. Equivalently, the (i, j)-entry is 1 precisely
when A j ⊆ Li, which by Equation (30) occurs precisely when ⟨Bi,A j⟩ = 1. In particular, we have the
following reinterpretation of the quotient-atom matrix.

Proposition 13. The quotient-atom matrix is the n×m matrix whose (i, j)-entry is ⟨Bi,A j⟩.

7 Complexity

In this section, we look at when the lattices we construct can be in some sense as large as possible.
If we adopt the notation of Notation 4, then there are at most 2n unions of left quotients and at most

2m unions of right quotients of L. By Theorem 1, the number of unions of left quotients is equal to the
number of unions of right quotients, and hence there are at most 2min(m,n) unions of left/right quotients
of L.

It is also not difficult to see that if L has 2n − 1 positive atoms—that is, all possible positive atoms
exist—then there are 2n unions of left quotients. We show, however, to realize this maximal complexity,
only n left atoms of L are required.

Proposition 14. There are 2n unions of left quotients of L if and only if all the left atomic intersections
with one uncomplemented and n−1 complemented left quotients are non-empty.

Proof. Let us suppose that all the left atomic intersections with one uncomplemented and n−1 comple-
mented left quotients of L are non-empty. That is, for every i ∈ {0, . . . ,n−1}, the left atomic intersection
I{i} is non-empty. Hence, for each left quotient Li, there is at least one atom, namely I{i}, contained in Li

and not contained in any other left quotient. Since the left atoms are pairwise disjoint, this implies that
there are 2n distinct unions of left quotients of L.

Conversely, if I{i} is empty for some i, then it is easily checked that⋃
j ̸=i

L j =
⋃

j

L j
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and so the number of unions of left quotients of L is strictly less than 2n. □

A similar result can be achieved for the complexity of intersections of left quotients of L.
Proposition 15. There are 2n intersections of left quotients of L if and only if all the left atomic intersec-
tions with n−1 uncomplemented and one complemented left quotients are non-empty.

Proof. First, let us assume that for every k ∈ {0, . . . ,n−1}, Zk := I{0,...,n−1}\{k} is non-empty.
Now, consider any intersection of left quotients X = Li1 ∩·· ·∩Lis . Then one can verify that Zk ⊆ X if

and only if k ̸∈ {i1, . . . , is} for k ∈ {0, . . . ,n−1}. Thus by checking which of the left atoms Z0, . . . ,Zn−1
are subsets of an intersection of left quotients, we can uniquely recover the left quotients appearing in
the intersection and so we obtain 2n distinct intersections.

Conversely, suppose that for some k, the intersection Zk is empty. Then
⋂

j ̸=k L j has empty intersec-
tion with Lk and thus is contained in Lk. Hence⋂

j ̸=k

L j =
⋂

j

L j,

and so the number of intersections of left quotients of L is strictly smaller than 2n. □

We get the following result as an immediate consequence of Propositions 14 and 15.
Corollary 16. Let n > 2. Then the 2n atoms of L, described in Propositions 14 and 15, are necessary
and sufficient to obtain the equalities

|Latt(L,∪,L)|= |Latt(L,∩,L)|= 2n.

Corollary 16 gives an efficient means for checking that the lattices we obtain are of maximal possible
complexity. It would be interesting to know whether other lattice-theoretic properties for the lattices
we consider can be efficiently checked or even characterized in terms of the associated automata. Of
particular interest is the question of when our lattices are distributive. In the framework considered by
Im and Khovanov [5], the distributive property is key for associating topological quantum field theories
to regular languages.
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