
DEFINITE ORDERS WITH LOCALLY FREE CANCELLATION
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Abstract. We enumerate all orders in definite quaternion algebras over number fields with
the Hermite property; this includes all orders with the cancellation property for locally free
modules.
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1. Introduction

Motivation. Let R be the ring of integers of a number field F with class group ClR, the
group of isomorphism classes of locally principal R-modules under tensor product. In fact,
every finitely generated, locally free R-module M is of the form M ' a1 ⊕ · · · ⊕ an where
each ai is a locally principal R-module; moreover, we have a1⊕· · ·⊕an ' b1⊕· · ·⊕bm if and
only if m = n and [a1 · · · an] = [b1 · · · bm] ∈ ClR. In particular, every such M is of the form
M ' Rm ⊕ a and the Steinitz class [a] ∈ ClR is well-defined on the R-module isomorphism
class of M . Thus, if a, b are locally principal R-modules and m > 0, then:

(i) Rm ⊕ a ' Rm ⊕ b if and only if a ' b; and
(ii) Rm ⊕ a is a free R-module if and only if a is free.

Property (i) can be seen as a cancellation law. And in this way, we rediscover the group
operation on ClR: given classes [a], [b] ∈ ClR, we have a⊕b ' R⊕ c with [c] = [ab] = [a][b].

Generalizations. We now pursue a noncommutative generalization: we seek to define a
group operation on isomorphism classes of modules in a way analogous to the previous
section. Let O be an R-order in a finite-dimensional semisimple F -algebra B. The (right)
class set ClsO of O is the set of locally principal right fractional O-ideals I ⊆ B under
the equivalence relation I ∼ J if there exists α ∈ B× such that I = αJ . Equivalently,
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ClsO is the set of isomorphism classes of locally principal right O-modules. Because B
may be noncommutative, the class set ClsO in general need not be a group—but there is a
distinguished element [O] ∈ ClsO, and by the geometry of numbers (the Jordan–Zassenhaus
theorem; see, for example, Reiner [Rei75, §26] for a proof), we have # ClsO <∞, so at least
ClsO is a pointed finite set.

In this generality, properties (i) and (ii) above may fail to hold! Accordingly, we make
the following definitions. Let M , N be finitely generated, locally free right O-modules.
We say M , N are stably isomorphic, written M 'st N , if there exists m ∈ Z>0 such that
Om ⊕M ' Om ⊕N ; and we say M is stably free if M 'st O

m for some m ∈ Z>0.
Let StClO denote the set of stable isomorphism classes of locally principal right O-

modules. Taking the stable isomorphism class gives a natural surjective map of pointed
sets, called the stable class map

st : ClsO → StClO

[I] 7→ [I]st.
(1.1)

Moreover, for [I]st, [J ]st ∈ StClO, there exists a unique [K]st ∈ StClO such that I ⊕ J '
O⊕K [Frö75, I, p. 115]; and under the operation [I]st +[J ]st = [K]st, the set StClO becomes
a finite abelian group (related to a Grothendieck group, see Remark 3.9).

In the most desirable circumstance, the stable class map is a bijection—with this in mind,
we make the following definitions. We say O has locally free cancellation if M 'st N implies
M ' N for all finitely generated, locally free right O-modules M , N . In this case, if K,
M , N are finitely generated, locally free modules with K ⊕M ' K ⊕ N , then M ' N .
We say O is Hermite if M 'st O

m implies M ' Om for all such M and m > 0. If O has
locally free cancellation, then O is Hermite; but importantly the converse does not hold in
general—a counterexample is described in detail by Smertnig [Sme15].

Every finitely generated, locally free right O-module M is of the form M ' Om ⊕ I
where I is a locally principal right O-module [Frö75, I]. Consequently, O has locally free
cancellation if and only if the stable class map (1.1) is injective (and therefore bijective),
and O is Hermite if and only if st−1([O]st) = {[O]} (trivial kernel as pointed sets). If O has
locally free cancellation, then by transport (1.1) defines a natural group structure on ClsO.

The reduced norm defines a surjective map of pointed sets

nrd: ClsO → ClG(O)R

[I] 7→ [nrd(I)]
(1.2)

where ClG(O)R is a finite abelian group, a certain modified class group of R associated to
the idelic normalizer of O. By a theorem of Fröhlich [Frö75, II], extending an earlier result of
Swan [Swa62] for maximal orders, there is an isomorphism of groups StClO ' ClG(O)R. In
this way, the rather abstract stable class map (1.1) can be reinterpreted concretely in terms
of the reduced norm. For more, see Curtis–Reiner [CR87, §47] and Yu [Yu17].

Finally, as a consequence of the theorem of strong approximation, if no simple factor
of B is a totally definite quaternion algebra, then the map nrd in (1.2) is bijective, and
consequently O has locally free cancellation.

Main result. In light of the previous section, we are left with the case where B is a totally
definite quaternion algebra (and in particular F is a totally real field), and we refer to an
R-order O ⊆ B as a definite (quaternion) order. Our main result is as follows.
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Theorem 1.3. Up to ring isomorphism, there are exactly 303 definite Hermite quaternion
orders and exactly 247 with locally free cancellation.

The orders in Theorem 1.3 are listed in appendix B, along with detailed information about
them; a computer-loadable version is available [SV19]. These orders arise in quaternion
algebras over exactly 36 number fields F up to isomorphism. If we fix the fields F arising
this way, we can refine our count by looking at orders up to R-algebra isomorphism, where
R is the ring of integers of F (thereby distinguishing Galois conjugates): counted this way,
there are exactly 375 definite Hermite quaternion R-orders and exactly 316 with locally free
cancellation.

Theorem 1.3 can be seen as the culminating resolution to a very general class number 1
(or unique factorization) problem for central simple algebras over number fields.

Previous results. Vignéras [Vig76] showed that there are only finitely many isomorphism
classes of definite, hereditary quaternion orders with locally free cancellation. She provided
a numerical criterion characterizing locally free cancellation, but in fact this was shown to
characterize Hermite orders by Smertnig [Sme15]. By use of Odlyzko discriminant bounds,
Vignéras found that Hermite orders are only possible over number fields of degree at most 33,
and then she classified them over quadratic and cyclic cubic fields. More recently, Hallouin–
Maire [HM06] classified definite hereditary Hermite orders (they refer to Eichler orders, but
like Vignéras only consider those Eichler orders of squarefree reduced discriminant) by a
rather involved analysis, finding that they arise only for fields of degree at most 6. Finally,
Smertnig [Sme15] completed the classification of definite hereditary orders with locally free
cancellation.

The Hermite property has appeared in work by other authors in various guises. Estes–Nipp
[EN89] and Estes [Est91b] considered factorization properties in quaternion orders, among
them one they call factorization induced by local factorization (FLF ). After observing that
the principal genus of O (as defined by Estes) consists precisely of the stably free right
O-ideals, the theorem of Estes [Est91b, Theorem 1] shows that O has FLF if and only if
O is Hermite, a connection first noted by Nipp [Nip75]. Estes–Nipp classify all 40 definite
Hermite quaternion Z-orders [EN89, Table I]. Unlike the results of Vignéras and Hallouin–
Maire, their classification is not restricted to hereditary orders—but it is only carried out
over R = Z.

Every quaternion order O with # ClsO = 1 trivially has locally free cancellation, and all
orders with # ClsO 6 2 were enumerated by Kirschmer–Lorch [KL16b].

The global function field case was studied by Denert–Van Geel [DVG86, DVG88]. In
this case, because of the absence of archimedean places, there are central simple algebras of
arbitrary dimension that do not satisfy strong approximation. Denert–Van Geel show that if
O is a definite Hermite order over a global ring in a function field F , then F = Fq(t) must be a
rational function field [DVG86, Theorem 2.1]. Moreover, they prove that—unlike the number
field setting—there are infinitely many nonisomorphic quaternion algebras containing definite
maximal orders with locally free cancellation [DVG86, Theorem 2.2]. (Some care must be
taken in reading these papers, as they seem to incorrectly identify the Hermite property with
locally free cancellation.)

Discussion. Our proof of Theorem 1.3 follows the general approach of Vignéras and Hall-
ouin–Maire, but it differs in two important respects.
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(1) Our paper is essentially self-contained, and in particular we do not use the criterion
of Vignéras (derived from a computation involving Tamagawa measures). Instead, we
give a simple, direct argument (Theorem 5.11, Corollary 5.13) that the mass of the
fibers in the stable class map is constant ; this allows us to reinterpret the theory in a
clarifying way (Proposition 4.3). (For sanity, we show that our criterion implies the
criterion of Vignéras, see Theorem A.1.) Combined with the Eichler mass formula,
this provides a stable mass formula for each of the fibers of the stable class map, from
which we may proceed with analytic estimates.

(2) As much as possible, we use machine computation in lieu of delicate, case-by-case
analysis by hand. This makes it easier for the reader to verify and to experiment
with the result [SV19]. It also means that we can get away using slightly weaker,
but easier to prove, bounds for the degree of F (Proposition 6.3). This approach is
important for reproducibility and to avoid slips, given the complexity of the answer.
Our calculations are performed in the computer algebra system Magma [BCP97];
the total running time is less than an hour on a standard CPU. We hope that our
quaternionic algorithms will be of further use to others, beyond the classification in
this paper: for example, we implement a systematic enumeration of suborders and
superorders of quaternion orders, as well as the computation of the stable class group.

We checked our output by restricting it and comparing to existing lists of orders (see
Remark 6.14), and in every case we checked they agree.

The list of definite quaternion orders is quite remarkable! For some interesting examples,
further discussion, and an application to factorization, see section 7.

Organization. Our paper is organized as follows. In section 2, we set up preliminaries
on class groups and in section 3 the properties of locally free cancellation and Hermite. In
section 4, we characterize these properties in terms of masses. In section 5, we establish a
mass formula for the fibers of the stable class map. Next, in section 6, we present bounds
for the search and our algorithm to find all orders with locally free cancellation. We then
discuss examples and applications in section 7. Finally, in Appendix A, we compare our
stable mass formula with the criterion of Vignéras, and then in Appendix B we present the
tables describing the output in detail.

Acknowledgements. The authors would like to thank Emmanuel Hallouin, Christian Maire,
Markus Kirschmer, Roger Wiegand, and the anonymous referee. Voight was supported by an
NSF CAREER Award (DMS-1151047) and a Simons Collaboration Grant (550029). Smert-
nig was supported by the Austrian Science Fund (FWF) project J4079-N32. The research
for this paper was conducted while Smertnig was visiting Dartmouth College; he would like
to extend his thanks for their hospitality.

2. Preliminaries

As a general reference for quaternion algebras, we refer to the books of Vignéras [Vig80]
and Voight [Voi19].

Notation. Throughout, let F be a totally real number field of degree n = [F : Q] and ring
of integers R. Let F×>0 be the set of totally positive elements of F× (positive under all real
embeddings of F ). For a (nonzero) prime p of R, let Fp denote the completion of F at p with
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valuation ring Rp ⊆ Fp. We write F̂ :=
∏′

p Fp for the finite adeles of F , the restricted direct

product with respect to Rp indexed over the primes of R; we similarly write R̂ :=
∏

pRp.

Let S be a finite (possibly empty) set of primes of R. For a subset X ⊆ F̂ , denote by

XS,1 := {α = (αp)p ∈ X : αp = 1 for all p ∈ S}. (2.1)

Let IdlR be the group of fractional R-ideals a ⊆ F , and let IdlS R 6 IdlR be the subgroup
of those a ∈ IdlR for which ap = Rp for all p ∈ S. Let

F×S := {a ∈ F× : a ∈ R×p for all p ∈ S}, (2.2)

and let
PIdlS R := {aR : a ∈ F×S } 6 IdlS R. (2.3)

Also throughout, let B be a definite quaternion algebra over F , and let O be an R-order

in B. We write Op := O ⊗R Rp and Bp := B ⊗F Fp, and define B̂ and Ô similarly as above.

Class groups. The following class group will be of central importance for us. From now on,
let S be a finite set of primes p of R containing all those for which Op is not maximal. We
recall that if Op is maximal, then nrd(O×p ) = R×p [Voi19, Lemma 13.4.6; Vig80, Corollaire
II.1.7, Théorème II.2.3(1)]. Thus, all primes p for which nrd(O×p ) ( R×p are contained in S.

Definition 2.4. Define

F×S,O := {a ∈ F×>0 : a ∈ nrd(O×p ) for all p ∈ S},
PIdlS,O R := {aR : a ∈ F×S,O}

(2.5)

and let
ClG(O)R := IdlS R/PIdlS,O R. (2.6)

Just as there are canonical group isomorphisms

F×\F̂×/R̂× ' ClR = IdlR/PIdlR ' IdlS R/PIdlS R, (2.7)

the ‘global’ definition given in Definition 2.4 can also be given equivalently adelically as in
the following lemma. We only use this lemma to identify the stable class group with ClG(O)R
to compare with work of Fröhlich [Frö75] later on.

Lemma 2.8. The following statements hold.

(a) We have

F×>0 nrd(Ô×) ∩ F̂×S,1 = F×S,OR̂
× ∩ F̂×S,1.

(b) There are canonical group isomorphisms

ClG(O)R ' (F×>0 nrd(Ô×) ∩ F̂×S,1)\F̂
×
S,1

= (F×>0 nrd(Ô×) ∩ F̂×S,1)\F̂
×
S,1/R̂

×
S,1 ' F×>0\F̂×/nrd(Ô×).

Proof. First (a). To show (⊆), let aβ ∈ F×>0 nrd(Ô×) ∩ F̂×S,1 with a ∈ F×>0 and β ∈ nrd(Ô×).

Since aβp = 1 for all p ∈ S, we conclude a ∈ nrd(O×p ). Thus a ∈ F×S,O. Conversely (⊇),

let aβ ∈ F×S,OR̂
× ∩ F̂×S,1. Then again aβp = 1 for all p ∈ S. Since a ∈ nrd(O×p ), this

implies βp ∈ nrd(O×p ). Since S contains all primes p for which nrd(O×p ) ( R×p , we conclude

β ∈ nrd(Ô×).
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Next, (b). The middle equality is due to the obvious inclusion R̂×S,1 ⊆ F×>0 nrd(Ô×)∩ F̂×S,1.
By weak approximation, the homomorphism

F̂×S,1 → F̂×S,1/R̂
×
S,1 → F×>0\F̂×/nrd(Ô×) (2.9)

is surjective with kernel F×>0 nrd(Ô×) ∩ F̂×S,1, giving the last isomorphism.

By (a) we have F×>0 nrd(Ô×) ∩ F̂×S,1 = F×S,OR̂
× ∩ F̂×S,1. Since F̂×S,1/R̂

×
S,1 ' IdlS R, we get an

isomorphism (F×S,OR̂
× ∩ F̂×S,1)\F̂

×
S,1/R̂

×
S,1 ' IdlS R/PIdlS,O R. �

Class set and mass. We now turn to the class set of our order. A right fractional O-ideal is
an R-lattice I ⊆ B (a finitely generated R-submodule with IF = B) such that O ⊆ OR(I),
where OR(I) := {α ∈ B : Iα ⊆ I} is the right order of I.

Definition 2.10. The (right) class set of O, denoted ClsO = ClsRO, is the set of isomor-
phism classes of locally principal right fractional O-ideals.

Concretely, two right fractional O-ideals I, J are isomorphic if and only if there exists
α ∈ B× such that αI = J , and we write [I] ∈ ClsO for ideal classes. We define the left
class set ClsLO similarly, noting that the standard involution furnishes a bijection between
the right and left class sets. We work primarily on the right, and accordingly suppress the
subscript.

By the geometry of numbers (Jordan–Zassenhaus theorem), we have # ClsO < ∞, so
ClsO is a finite pointed set with distinguished element [O]—but in general, ClsO is not a
group under multiplication. From the idelic viewpoint, via completions there is a canonical

bijection ClsO ↔ B×\B̂×/Ô×.
The reduced norm induces a surjective map of finite (pointed) sets

nrd: ClsO → ClG(O)R

[I] 7→ [nrd(I)]
(2.11)

Definition 2.12. For [b] ∈ ClG(O)R, we define

Cls[b]O := nrd−1({[b]}) =
{

[I] ∈ ClsO : [nrd(I)] ∈ [b]
}
.

For a (finite) subset X = {[Ii]}i ⊆ Cls(O), we define the mass of X to be

mass(X) :=
r∑
i=1

1

[OL(Ii)× : R×]
∈ Q>0 (2.13)

(well-defined independent of the choice of representatives).
We will later (Theorem 6.1) recall an explicit expression for mass(ClsO), generalizing the

Eichler mass formula.
Finally, we define the genus of O to be the set of R-orders in B locally isomorphic to O.

3. Locally free cancellation

In this section, we now relate the class set to naturally associated abelian groups.
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Stable isomorphism and cancellation. Let M , N be right O-modules.

Definition 3.1. We say that M , N are stably isomorphic, and write M 'st N , if there exists
m > 0 such that M ⊕ Om ' N ⊕ Om. We say M is stably free if M is stably isomorphic to
a free module.

For more background on stably free modules in a much broader context of (noncommuta-
tive) rings, see Lam [Lam06, Chapter I.4] and McConnell–Robson [MR01, Chapter 11].

Remark 3.2. A stably free right O-module that is not finitely generated is necessarily free
[Lam06, Proposition I.4.2], so we may restrict our attention to finitely generated modules
without loss of generality.

If M ' N , then of course M 'st N ; we now give a name to the converse, restricted to
locally free modules.

Definition 3.3. We say O has locally free cancellation if for all locally free, finitely generated
O-modules M , N , we have

M 'st N ⇒ M ' N, (3.4)

that is, whenever M , N are stably isomorphic, then they are in fact isomorphic.
We say O is a (right) Hermite ring if for all locally free, finitely generated O-modules M

we have M 'st O
m implies M ' Om, that is, every stably free, locally free right O-module

is in fact free.

A straightforward dualization argument shows that a ring is left Hermite if and only if it
is right Hermite. And if O has locally free cancellation, then clearly O is Hermite.

Remark 3.5. Any stably free module over a semilocal ring is free (see Lam [Lam06, Examples
I.4.7] or McConnell–Robson [MR01, Theorem 11.3.7]); hence, stably free right O-modules
are locally free. Therefore, O is Hermite if and only if every stably free right O-module is
free.

As the following lemma shows, locally free cancellation actually implies the apparently
stronger property that arbitrary locally free, finitely generated modules may be cancelled
from direct sums, thus justifying the name.

Lemma 3.6. An order O has locally free cancellation if and only if for all locally free, finitely
generated O-module M , N , K, we have

K ⊕M ' K ⊕N ⇒ M ' N.

That is, the commutative monoid of isomorphism classes of locally free, finitely generated
O-modules under direct sum is cancellative.

Proof. The implication (⇐) is clear. For (⇒), suppose that O has locally free cancellation
and M , N , K are such that K ⊕ M ' K ⊕ N . Since K is locally free, the fact that
Ext1 commutes with localization in our setting shows that K is projective; see, for example,
Curtis–Reiner [CR81, Proposition 8.19]. Let K ′ be such that K ⊕K ′ ' On for some n > 0.
Then On ⊕M ' On ⊕N , and then M ' N by locally free cancellation. �

Stable isomorphism defines an equivalence relation on the locally principal right fractional
O-ideals. We denote by [I]st the stable isomorphism class of I, and by StClO the set of all
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stable isomorphism classes of locally principal (that is, locally free rank 1) right fractional
O-ideals. Taking stable isomorphism classes gives a natural surjective map

st : ClsO → StClO

[I] 7→ [I]st
(3.7)

of pointed sets, with kernel Cls[R]O.
For a locally free, finitely generated right O-module M , by definition for all p there exists

an m such that Mp
∼= Om

p . The number m is independent of p and is called the rank of M .

Lemma 3.8. The following statements hold.

(a) Let M be a (nonzero) locally free, finitely generated right O-module M . Then there
exists a locally principal right O-ideal I such that M ' Om⊕ I (with m = rkM − 1),
and [I]st is uniquely determined by [M ]st.

(b) Let I, J be locally free right fractional O-ideals. Then there exists a locally principal
right O-ideal K such that I ⊕ J ' O ⊕K, and [K]st is uniquely determined by [I]st
and [J ]st.

Proof. See Fröhlich [Frö75, I, p. 115] for part (a); part (b) follows from (a), and it is precisely
the notion of stable isomorphism that implies that the class is well-defined. �

By Lemma 3.8(b), defining [I]st + [J ]st = [K]st, the set StClO has the structure of a finite
abelian group, the stable class group of O. See Reiner [Rei75, §35] or Curtis–Reiner [CR87,
§49] for further detail.

Remark 3.9. Let K0(O) be the Grothendieck group of locally free right O-modules of finite
rank. Then there is an exact sequence of groups

0→ StCl(O)→ K0(O)
rk−→ Z→ 0

[I]st 7→ (I)− (O)
(3.10)

Let V(O) be the commutative monoid consisting of isomorphism classes [M ] of locally
free, finitely generated O-modules together with the operation [M ] + [N ] = [M ⊕ N ]. By
Lemma 3.6, if O has locally free cancellation, then V(O) is cancellative, and thus embeds
into K0(O), with K0(O) in fact being the quotient group of V(O).

Reduced norms and equivalences. Define

B̂1 := {α̂ ∈ B̂ : nrd(a) = 1}.

We recall the following local description of the stable class group.

Theorem 3.11 (Fröhlich [Frö75, II, p. 115]). There exists a group isomorphism

StCl(O) ' B×\B̂×/B̂1Ô×

[I]st 7→ B×α̂B̂1Ô×,
(3.12)

where α̂ = (αp)p if Ip = αpOp.
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In particular, Theorem 3.11 yields a commutative diagram

ClsO StCl(O)

B×\B̂×/Ô× B×\B̂×/B̂1Ô×

∼ ∼ (3.13)

where the top map is the stable class map (3.7) and the bottom map is the natural projection.

Corollary 3.14.

StCl(O) ' F×\F̂×/nrd(Ô×) ' ClG(O)R. (3.15)

Proof. Apply the reduced norm to the right-hand side of (3.13) (an isomorphism of groups
onto its image) and then apply Lemma 2.8. �

Since ClG(O)R is the most accessible of these groups, in the remainder of the paper we
will always work with it.

As a consequence of these isomorphisms, we can interpret the fibers of the reduced norm
map nrd: ClsO → ClG(O)R as parametrizing the isomorphism classes of locally principal
right fractional O-ideals in a given stable isomorphism class.

4. Characterization

In this section, we characterize the locally free cancellation and Hermite properties in
terms of masses and compare the two properties.

Masses. We begin with a quick lemma.

Lemma 4.1. The following are equivalent:

(i) For all [b] ∈ ClG(O)R,

mass(Cls[b]O) =
mass(ClsO)

#ClG(O)R
;

(ii) mass(Cls[b]O) is independent of the class [b] ∈ ClG(O)R; and

(iii) mass(Cls[R]O) = mass(Cls[R]O′) for every order O′ that is locally isomorphic to O.

Proof. The equivalence (i)⇔ (ii) follows from the surjectivity of (2.11).
To set up the equivalence (ii)⇔ (iii), let O′ be locally isomorphic to O. Then there exists

a locally principal right O-ideal that is also a locally principal left O′-ideal [Voi19, Lemma
17.4.6; Vig80, Lemme I.4.10]. Let [c] = [nrd(J)] ∈ ClG(O)R. The ideal J induces a bijection

µ : ClsO
∼−→ ClsO′

[I] 7→ [IJ−1].
(4.2)

Noting that also OL(IJ−1) = OL(I), we see that µ preserves the mass of each class. Since
nrd(IJ−1) = nrd(I) nrd(J)−1 and ClG(O)R = ClG(O′)R, this in turn induces mass-preserving

bijections Cls[b]O → Cls[bc
−1]O′.

For the direction (ii)⇒ (iii), we take J to be a connecting O′, O-ideal and conclude from
the previous paragraph that

mass(Cls[R]O′) = mass(Cls[c]O) = mass(Cls[R]O).
9



For the converse (ii) ⇐ (iii), let J be a locally principal right O-ideal with [nrd(J)] = [b],
and let O′ = OL(J); then

mass(Cls[b]O) = mass(Cls[R]O′) = mass(Cls[R]O). �

We now prove the promised characterizations.

Proposition 4.3. The following are equivalent.

(i) O has locally free cancellation.
(ii) The monoid of isomorphism classes of locally free, finitely generated right O-modules

is cancellative.
(iii) Locally principal right (fractional) O-ideals that are stably isomorphic are isomorphic.
(iv) The map nrd: ClsO → ClG(O)R is injective, and hence bijective.
(v) For every [b] ∈ ClG(O)R and I a right (fractional) O-ideal with [nrd(I)] = [b],

mass(Cls[b]O) =
1

[OL(I)× : R×]
.

(vi) We have #ClsO = #ClG(O)R.

Moreover, these statements are equivalent to the corresponding statements for left O-modules.

Proof. (i) ⇔ (ii) by Lemma 3.6. (i) ⇒ (iii) holds by definition, and (iii) ⇒ (i) follows from
Lemma 3.8: if M,N are nonzero stably isomorphic, locally free right O-modules of finite
rank, writing M ' Om ⊕ I and N ' Om ⊕ J , we have I 'st J , so by hypothesis I ' J ,
hence M ' N .

For the equivalence (iii) ⇔ (iv), two locally principal right fractional O-ideals are iso-
morphic if and only if [I] = [J ] in ClsO, and they are stably isomorphic if and only if
[nrd(I)] = [nrd(J)] in ClG(O)R in view of Corollary 3.14.

The equivalences (iv) ⇔ (v) is direct, since nrd([I]) = [b]. The equivalence (iv) ⇔ (vi)
follows as nrd is surjective.

Finally, the corresponding equivalences hold for left modules, and the left-right symmetry
follows from #ClsRO = #ClsLO and (vi). �

Proposition 4.4. The following are equivalent.

(i) O is a Hermite ring.
(ii) Every stably free right O-ideal is free.

(iii) The kernel of the stable class map is trivial, that is, # Cls[R](O) = 1.
(iv) We have

mass(Cls[R]O) =
1

[O× : R×]
.

Moreover, these statements are equivalent to the corresponding statements for left O-modules.

Proof. As in Proposition 4.3. �

Further remarks. We give a few remarks on extensions and other characterizations of the
above.

Remark 4.5. With the exception of Propositions 4.3(v) and 4.4(iv) (replace with a volume)
and with suitable changes to the definition of ClG(O)R to account for the archimedean places,
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similar characterizations hold for indefinite orders over number fields. But for indefinite or-
ders, strong approximation already implies that the map nrd: ClsO → ClG(O)R is bijective,
so we always have locally free cancellation.

Remark 4.6. By yet another characterization, the ring O is a Hermite ring if and only if every
unimodular row (or column) of rank n > 1 can be extended to an invertible n × n-matrix;
that is, O is Hermite if and only if the general linear rank of O is 1 [MR01, 11.1.14].

Remark 4.7. Since O has Krull dimension 1, its stable rank (and hence its general linear
rank), is at most 2 [MR01, 11.3.7]. From this it follows—whether or not O is Hermite—that
every stably free module of rank > 2 is free, a fact which can also be seen by an application
of strong approximation.

Moreover, if M,N are locally free right O-modules of rank m > 2 and M 'st N , then
M ' N . Indeed, writing M = Om−1 ⊕ I with I a locally principal right O-ideal, the claim
follows from McConnell–Robson [MR01, 11.4.8]. This gives another justification for (ii)⇒(i)
in Propositions 4.3 and 4.4. For M , N of rank 1, we still get M ⊕O ' N ⊕O, but of course
we might not be able to cancel the final factor O.

There is a stronger connection between the two properties than it might initially seem, as
the following result shows.

Proposition 4.8. The following statements are equivalent.

(i) O has locally free cancellation.
(ii) Every order O′ locally isomorphic to O is Hermite.

Proof. First we prove (i) ⇒ (ii). Let O′ be locally isomorphic to O. As in the proof of
Lemma 4.1, there exists a locally principal right O-ideal that is also a locally principal
left O′-ideal. Let J be a stably free right O′-ideal. Then the compatible product JI is
a locally principal right O-ideal with nrd(JI) = nrd(J) nrd(I) [Voi19, Chapter 16]. Thus
[nrd(JI)] = [nrd(J)][nrd(I)] ∈ ClG(O)R. Since O and O′ are locally isomorphic, we have
PIdlS,O R = PIdlS,O′ R and hence can identify ClG(O)R = ClG(O′)R. Because J is stably free
as right O′-ideal, we have [nrd(J)] = [R], and conclude [nrd(JI)] = [nrd(I)]. Since O has
locally free cancellation, then JI ' I as right O-ideals, which implies that J is a principal
right O′-ideal.

Next we prove (ii) ⇒ (i). Let I, J be stably isomorphic, locally principal right O-ideals.
Let O′ := OL(J). Then O′ is locally isomorphic to O, and hence a Hermite ring by hypothesis.
The inverse J−1 is a fractional left O-ideal with nrd(J−1) = nrd(J)−1. Hence, IJ−1 is a
compatible product with [nrd(IJ−1)] = [nrd(I)][nrd(J)]−1 = [R] ∈ ClG(O′)R. Thus, IJ−1 is
stably free, and by assumption on O′, IJ−1 = αO′ is free with α ∈ B×. Multiplying on the
right by J , we see I = αJ so I ' J as right O-ideals. �

5. Masses and suborders

Our goal in this section is to investigate the behavior of mass(Cls[R]O) and ClG(O)R as
the order O varies. The main result is Theorem 5.11, which in particular implies that if O
and O′ are locally isomorphic orders, then

mass(Cls[R]O) = mass(Cls[R]O′) (5.1)
11



from which we deduce

mass(Cls[R]O) =
mass(ClsO)

#ClG(O)R
. (5.2)

This opens the way for our computations starting in the next section, since mass(ClsO) can
be computed using the Eichler mass formula.

Extension of ideals. We now compare masses a bit more carefully in preparation for our
main result.

Let O ⊆ O′ be orders, and let ρ = ρO,O′ be the extension map from locally principal right
O-ideals to locally principal right O′-ideals defined by ρ(I) = IO′. The fibers of ρ have finite
cardinality. Let

ρ : ClsO → ClsO′

[I] 7→ [IO′]
(5.3)

denote the induced map on right ideal classes. The extension map is compatible with the
reduced norm map: let ϕ = ϕG(O),G(O′) : ClG(O)R→ ClG(O′)R denote the canonical epimor-
phism, then the diagram

ClsO′ ClG(O′)R

ClsO ClG(O)R.

nrd

nrd

ρO,O′ ϕG(O),G(O′) (5.4)

is commutative. Moreover, the right-hand map (a natural projection) only depends on the
genera of O and O′.

The map ρ is fiber-by-fiber surjective, as follows. (See also Fröhlich [Frö75, VIII].)

Lemma 5.5. Let [b] ∈ ClG(O)R. Then ρ|Cls[b]O : Cls[b]O → Clsϕ([b])O′ is surjective, and ρ
is surjective.

Proof. Let [I ′] ∈ Clsϕ([b])(O′) so I ′ is a locally principal fractional right O′-ideal such that
nrd(I ′) = b. Write I ′p = αpO

′
p for each prime p. Since Op = O′p for all but finitely many p,

by the local–global dictionary for lattices, there exists an R-lattice I such that Ip = αpOp

for all p, so [I] ∈ Cls[b](O) has [IO′] = [I ′] as desired. Running over [b], we conclude ρ is
surjective. �

We deduce the following important result for our classification.

Corollary 5.6. Let O ⊆ O′ be orders. If O is Hermite or has locally free cancellation, then
the same is true for O′.

Proof. By Proposition 4.4(iii), the order O is Hermite if and only if #Cls[R]O = 1. By

Lemma 5.5, the map Cls[R]O → Cls[R]O′ is surjective. Hence, if O is Hermite, so is O′.
A similar proof works for locally free cancellation. �

Comparison of masses. We now look more carefully at the extension map to compare
masses. Let I ′ be a locally principal right O′-ideal. Suppose that there exists a prime p such
that Oq = O′q for all primes q 6= p. Then there exists a transitive right action of O′×p on
ρ−1(I ′) as follows. Let µ ∈ O′×p . If I ∈ ρ−1(I ′) and Ip = βpOp with βp ∈ Op, we assign to I
the unique locally principal right O-ideal I〈µ〉 such that I〈µ〉 = βpµOp and I〈µ〉q = Iq for
q 6= p. The stabilizer of this action is O×p , hence #ρ−1(I ′) = [O′×p : O×p ].

12



Repeating this argument over the classes [I ′], we obtain a bijection

ClsO ↔
⊔

[I′]∈ClsO′

OL(I ′)×\ ρ−1(I ′). (5.7)

See Voight [Voi19, §26.6] for more discussion.

Lemma 5.8. If O ⊆ O′ are R-orders, then the index [Ô′× : Ô×] is well-defined as a function
of the index [O : O′] and the genus of O and O′.

Proof. We may compute the index locally, so let p be prime and let pmO′p ⊆ Op. Then

[O′×p : O×p ] =
[O′×p : 1 + pO′p][1 + pO′p : 1 + pmO′p]

[O×p : 1 + pOp][1 + pOp : 1 + pmO′p]
=

[O′×p : 1 + pO′p]

[O×p : 1 + pOp]
[O′p : Op]. (5.9)

The result follows. �

Lemma 5.10. Let O ⊆ O′ be orders.

(a) Let I ′ be a locally principal right O′-ideal. Then

mass
(
ρ−1([I ′])

)
= [Ô′× : Ô×] mass([I ′]).

(b) We have

mass(ClsO) = [Ô′× : Ô×] mass(ClsO′).

(c) We have

mass(Cls[R]O′) = [Ô′× : Ô×]−1
∑

[b]∈ϕ−1([R])

mass(Cls[b]O).

Proof. It suffices to show the claim for the case where O and O′ only differ at a single prime
ideal p. For (a), we have

mass
(
ρ−1([I ′])

)
=

∑
[I]∈ρ−1([I′])

1

[OL(I)× : R×]
=

∑
I∈ρ−1(I′)

1

[OL(I)× : R×][OL(I ′)× : OL(I)×]

=
∑

I∈ρ−1(I′)

1

[OL(I ′)× : R×]
= #ρ−1(I ′) mass([I ′]) = [O′×p : O×p ] mass([I ′]).

Summing over the classes [I ′] and surjectivity then gives (b).
For part (c), we apply (a) to get

[Ô′× : Ô×] mass(Cls[R]O′) = mass
(
ρ−1(Cls[R]O′)

)
.

But

ρ−1(Cls[R]O′) = {[I] ∈ ClsO | [nrd(IO′)] = [R] ∈ ClG(O′)R} =
⊔

[b]∈ϕ−1([R])

Cls[b]O. �

With the basic comparison of masses in hand, we prove the following key theorem.

Theorem 5.11 (Stably free mass). Let O be an R-order in B. Then the following statements
hold.

(a) If O′ is locally isomorphic to O, then mass(Cls[R]O) = mass(Cls[R]O′).
13



(b) We have

mass(Cls[R]O) =
mass(ClsO)

#ClG(O)R
. (5.12)

(c) If O′ ⊇ O is a superorder, then

mass(Cls[R]O) =
#ClG(O′)R

#ClG(O)R
[Ô′× : Ô×] mass(Cls[R]O′).

Proof. We begin with (a). Let O0 := O ∩O′. With respect to the inclusion O0 ⊆ O, Lemma

5.10(c) expresses mass(Cls[R]O) in terms of masses on O0 and the index [Ô× : Ô×0 ]. Since O
is locally isomorphic to O′, they have equal reduced discriminants discrd(O) = discrd(O′) so

discrd(O0) = [O : O0]R discrd(O) = [O′ : O0]R discrd(O′)

so [O : O0] = [O′ : O0]. Thus, by Lemma 5.8 we get the same expression for mass(Cls[R]O′).
Part (b) then follows from Lemma 4.1 together with part (a), and then part (c) follows

from Lemma 5.10(b) and part (b). �

Corollary 5.13. O is Hermite if and only if

mass(ClsO) =
#ClG(O)R

[O× : R×]
. (5.14)

Proof. Combine Proposition 4.4(iv) which says

mass(Cls[R]O) =
1

[O× : R×]
;

with Theorem 5.11(b). �

Class groups. Retracing a standard argument for ray class groups, we determine the kernel
of the epimorphism ClG(O)R→ ClR and compare ClG(O)R and ClG(O′)R for orders O ⊆ O′.
We use these in the bounds and algorithms in the next section.

Lemma 5.15. Let

A B C
f g

be a pair of homomorphisms of abelian groups. Then there is an exact sequence

ker(f) ker(g ◦ f) ker(g) coker(f) coker(g ◦ f) coker(g) 0

Proof. This is a consequence of the snake lemma applied to

A B B/f(A) 0

0 C C 0.

f

g◦f g

id �

By Hensel’s Lemma, 1 + plRp ⊆ R×2p for l > vp(4). Therefore, 1 + plRp ⊆ nrd(O×p ). We
make use of this in applying weak approximation in the following two proofs.
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Proposition 5.16. There is an exact sequence

1 R× ∩ F×S,O R× F×S /F
×
S,O ClG(O)R ClR 1.

and
F×S /F

×
S,O ' {±1}n × R̂×/nrd(Ô×).

Proof. Consider the homomorphisms

F×S,O F×S IdlS R.
f g

Then ker(f) = 1, ker(g) = R×, and ker(g ◦ f) = R× ∩ F×S,O. For the cokernels we have

coker(g) = ClR, coker(g ◦ f) = ClG(O)R, and coker(f) = F×S /F
×
S,O. Thus, the previous

lemma yields the claimed exact sequence.
It remains to show F×S /F

×
S,O ' {±1}n×

∏
p∈S R

×
p/nrd(O×p ). Let a ∈ F×S . Then there exist

b, c ∈ R \ {0} such that a = b/c and vp(b) = vp(c) = 0 for all p ∈ S. Observing that the
following is independent of the representatives b, c, we define

f : F×S → {±1}n ×
∏
p∈S

R×p/nrd(O×p )

a 7→ (sgn a, bc−1)

(5.17)

By weak approximation, f is surjective. Clearly ker f = F×S,O. �

Proposition 5.18. Let O ⊆ O′ be orders. Then there is an exact sequence

1 R× ∩ F×S,O R× ∩ F×S,O′ F×S,O′/F
×
S,O ClG(O)R ClG(O′)R 1,

Moreover,

F×S,O′/F
×
S,O ' nrd(Ô′×)/nrd(Ô×).

Proof. The existence of the exact sequence follows again from Lemma 5.15, applied to

F×S,O F×S,O′ IdlS R.
f g

Weak approximation again implies that the homomorphism F×S,O′ →
∏

p∈S nrd(O′×p )/nrd(O×p )
is surjective, and hence gives rise to the claimed isomorphism. �

Proposition 5.19. We have

#ClG(O)R

#ClR
=

2n[R̂× : nrd(Ô×)]

[R× : R× ∩ F×S,O]
= [R×>0 ∩ nrd(Ô×) : R×2][R̂× : nrd(Ô×)].

Proof. The first equality follows from Proposition 5.16. For the second, note that

R×2 ⊆ R× ∩ F×S,O ⊆ R×,

and, since F is totally real of degree n, we have [R× : R×2] = 2n. Thus,

2n

[R× : R× ∩ F×S,O]
= [R× ∩ F×S,O : R×2].

Moreover, R× ∩ F×S,O = R×>0 ∩ nrd(Ô×). Hence, the second equality is shown. �
15



Corollary 5.20. Let O ⊆ O′ be orders with O′p maximal and O and O′ only differing at the
prime ideal p. Then

#ClG(O)R

#ClG(O′)R
=

[R×p : nrd(O×p )]

[R× ∩ F×S,O′ : R× ∩ F×S,O]
divides [R×p : nrd(O×p )].

Proof. Noting that nrd(O′×p ) = R×p , the result follows from Proposition 5.18. �

6. Bounds and algorithmic considerations

In this section, we bound the set of definite orders with the Hermite property by an
estimate of mass and Odlyzko bounds.

Setup. Let ζF (s) the Dedekind zeta function of F , let dF be the absolute discriminant of F ,
and let N := discrd(O) the reduced discriminant of O. We abbreviate h(R) := #ClR. For
a prime p | N with Nm(p) = q, we denote by (O | p) ∈ {−1, 0, 1} the Eichler symbol [Voi19,
Definition 24.3.2; Vig80, Definition II.2.10], and we define [Voi19, 26.1.1]

λ(O, p) :=
1− Nm(p)−2

1− (O | p) Nm(p)
=


1 + 1/q, if (O | p) = 1;

1− 1/q, if (O | p) = −1;

1− 1/q2, if (O | p) = 0.

We have the following generalization of Eichler’s mass formula to arbitrary definite orders.

Theorem 6.1 (Mass formula). We have

mass(ClsO) =
2ζF (2)

(2π)2n
d
3/2
F h(R) Nm(N)

∏
p|N

λ(O, p). (6.2)

Proof. See Vignéras [Vig80, Corollaire V.2.3] for the case of O an Eichler order and more gen-
erally Voight [Voi19, Main Theorem 26.1.5, Remark 26.1.14] for a proof, complete references,
and discussion. �

Bounds. We now bound the set of Hermite orders to a finite set.

Proposition 6.3 (Hallouin–Maire [HM06]). If O is a Hermite order, then n = [F : Q] 6 9
and

d
1/n
F 6 24/3−2/(3n)π4/3

(
#Cl+R

#ClR

)2/(3n)

(6.4)

6 22−4/(3n)π4/3. (6.5)

Moreover, if n = 9, then d
1/9
F < 13.53.

Proof. We repeat a simple variation of the proof of Hallouin–Maire for the convenience of
the reader.

If O is a Hermite order, then the same is true for every order containing O, by Corollary 5.6.
Thus, we may without restriction assume that O is maximal. Then nrd(O×p ) = R×p for all

primes p of R, and hence ClG(O)R = Cl+R is the narrow class group.
In Corollary 5.13, we showed that O is Hermite then

mass(ClsO) =
#ClG(O)R

[O× : R×]
6 #Cl+R. (6.6)
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Applying the mass formula (Theorem 6.1) and using the trivial estimates ζF (2) > 1 and
Nm(N)

∏
p|N λ(O|p) > 1, the first bound for the root discriminant (6.4) is obtained.

By Proposition 5.19,
#Cl+R

#ClR
=

2n

[R× : R× ∩ F×>0]
6 2n−1.

Substituting this into the first bound, we get the bound (6.5).
Comparing (6.5) with the discriminant bounds for totally real fields found in Odlyzko’s

tables [Odl76], we conclude n 6 14.
The Hilbert class field of F is a totally real field of absolute degree nh(R) and with the

same root discriminant as F . If ClR is nontrivial, then the degree of the Hilbert class field
is at least 2n. Again comparing with the Odlyzko bounds for totally real fields, we conclude
ClR must be trivial if n > 8. The quotient Cl+R/ClR is an elementary abelian 2-group
and the Armitage–Fröhlich theorem [AF67, I] states that

rk2 Cl+R− rk2 ClR 6 bn/2c.

Hence, in case n > 8, we have #Cl+R/#ClR = #Cl+R 6 2bn/2c.

Substituting into (6.4), we must have d
1/n
F 6 24/3+2(bn/2c−1)/(3n)π4/3 if n > 8. Comparing

this improved bound with the Odlyzko tables, we find n 6 10. Moreover, d
1/10
F 6 13.95 for

n = 10 and d
1/9
F < 13.53 for n = 9. By Voight’s tables of totally real fields [Voi08b], there

are no such fields of degree 10. Hence, n 6 9. �

Remark 6.7. Without Odlyzko’s tables, Vignéras [Vig76] showed [F : Q] 6 33. By first
bounding n 6 14 as above and then using the bound in (6.4) for each such n and differ-
ent possibilities of #Cl+R/#ClR, Hallouin–Maire show n 6 8 (without using Armitage-
Fröhlich). Using more careful arguments, Hallouin–Maire actually show n 6 6 in [HM06,
Proposition 11] and for these degrees obtain improved bounds on the discriminant in [HM06,
Proposition 12]. Since we leave the ultimate classification up to a computer, a priori we only
need bounds that are good enough to ensure that all fields in questions have been tabulated.
The weaker bounds that are more easily obtained suffice for us.

Proposition 6.8. If D = discB and B contains a Hermite order O, then∏
p|D

(Nm(p)− 1) = Nm(D)
∏
p|D

λ(O, p) 6
22n−1π2n

d
3/2
F

#Cl+R

#ClR
.

Proof. As in the previous proposition, we may suppose that O is maximal. Then λ(O, p) =
1− 1/Nm(p) for all p with p | D, and λ(O, p) = 1 otherwise. Again the claim follows from
the mass formula (Theorem 6.1), together with mass(ClsO) 6 #Cl+R. �

Lemma 6.9. Let O ⊆ O′ be Hermite orders. Suppose further that O and O′ only differ
at the prime ideal p, and that O′p is maximal. Let q = Nm(p), let [O′p : Op] = qm, and let

2l = [R×p : R×2p ]. Then

[O′×p : O×p ] = qmλ(O, p) ·

{
1, if B is split at p; and

(1− 1/q)−1, if B is ramified at p.

Moreover, [O′×p : O×p ] divides 2l[O′× : R×].
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Proof. For the formula for [O′×p : O×p ], see Voight [Voi19, Lemma 26.6.7].
Proposition 4.4(iv) and Theorem 5.11(c) imply

1

[O× : R×]
= mass(Cls[R]O) =

#ClG(O′)R

#ClG(O)R
[O′×p : O×p ] mass(Cls[R]O′).

Substituting mass(Cls[R]O′) = [O′× : R×]−1, together with Corollary 5.20, gives

[O× : R×] =
[R×p : nrd(O×p )][O′× : R×]

[R× ∩ F×S,O′ : R× ∩ F×S,O][O′×p : O×p ]
.

Thus [O′×p : O×p ] divides [R×p : nrd(O×p )][O′× : R×]. Since R×2p ⊆ nrd(O×p ) ⊆ R×p , finally

[O′×p : O×p ] divides 2l[O′× : R×]. �

The previous bounds imply the following finiteness result, proven by Vignéras [Vig76].

Corollary 6.10 (Vignéras [Vig76]). There exist only finitely many definite Hermite quater-
nion orders O.

Proof. Since F is a totally real field with bounded root discriminant by Proposition 6.3,
there exist only finitely many such fields. For each field, there exist only a finite number
of possible choices for the ramified places of B by Proposition 6.8. Finally, for each of the
finitely many isomorphism classes of maximal orders in B, the index of a Hermite suborder
is bounded by Lemma 6.9. �

Algorithm. We are now in a position to state an algorithm that finds all definite Hermite
orders.

Algorithm 6.11. The following algorithm enumerates all definite Hermite orders.

1. Using the tabulation of totally real fields [Voi08a, Voi08b], enumerate all fields with

n = [F : Q] 6 9 and, d
1/n
F < 16.4 if n 6 8, respectively d

1/n
F < 13.53 if n = 9. For

each eligible field F , use Proposition 6.8 to compute a finite list of primes p at which
B can ramify.

2. For each such algebra B, determine a set of representatives for the isomorphism
classes of maximal orders.

3. For each Hermite maximal order O′, using Lemma 6.9, compute a list of prime ideals
of R at which we need to consider non-maximal orders.

4. Iteratively compute suborders of O′ at the given primes, using Lemma 6.9 to bound
the necessary index, and check them for the desired property by computing their
stable class group.

Proof of correctness. The bound in Step 1 is valid by Proposition 6.3. For Step 2, we refer to
Kirschmer–Voight [KV10, KV12]. In Step 4, to check whether a given order is a Hermite ring,
we compute the stable class group ClG(O)R and mass(ClsO) and use Proposition 4.4(iv). �

The enumeration of suborders and the computation of ClG(O)R are not readily available
in existing computer algebra systems. Thus, we give some more detail on how these steps
can be implemented efficiently.

Remark 6.12 (Computation of ClG(O)R). Since algorithms to compute ray class groups are
already implemented in computer algebra systems, it is easiest to compute ClG(O)R as a
quotient of such a group.
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1. We compute the stable class group as a quotient of a ray class group. For a prime ideal
p of R, define l(p) = vp(4) + 1. Let m =

∏
p∈S p

l(p), and let F×m = {a ∈ F×>0 : a ≡ 1

mod m}. By choice of l(p) and Hensel’s Lemma, 1+pl(p)Rp ⊆ R×2p ⊆ nrd(O×p ). Thus,

F×m ⊆ F×S,O and the stable class group can be realized as a quotient of the ray class

group Cl+m R = IdlS R/F
×
m . More precisely, there is an exact sequence

F×S,O/F
×
m Cl+m R ClG(O)R 1.

As in Proposition 5.18,

F×S,O/F
×
m '

∏
p∈S

nrd(O×p )/(1 + pl(p)Rp).

To compute ClG(O)R, we therefore first compute Cl+m R, and then compute, for each

p ∈ S, a set of generators for nrd(O×p )/(1 + pl(p)Rp). Using the Chinese Remainder
Theorem to obtain suitable global representatives for these generators, we compute
ClG(O)R as quotient of Cl+m R.

2. To compute nrd(O×p )/(1 + pl(p)Rp), first note that nrd(1 + pl(p)Op) ⊆ 1 + pl(p)Rp.
Hence, the reduced norm induces a homomorphism

O×p /(1 + pl(p)Op) R×p/(1 + pl(p)Rp).

Thus, it suffices to compute the image of a generating set of O×p /(1 + pl(p)Op) under
nrd.

Since

O×p ⊇ 1 + pOp ) 1 + p2Op ) · · · ) 1 + pl(p)Op,

it suffices to compute generating sets of the multiplicative groups O×p /(1 + pOp) '
(Op/pOp)

× ' (O/pO)× and (1 + piOp)/(1 + pi+1Op). The latter group is isomorphic
to the additive group O/pO. A generating set for (O/pO)× can be computed since
O/pO is a finite-dimensional algebra over the finite field R/p. A Z-basis of O yields
a generating set for the additive abelian group O/pO.

Remark 6.13 (Enumeration of suborders). To enumerate suborders in a systematic way, we
organize them by radical idealizers [Voi19, Section 24.4]. We proceed as follows.

1. Compute representatives for the isomorphism classes of all maximal orders, giving a
list of orders.

2. For each prime p for which we need to consider non-maximal orders, and for each
(p-maximal) order O computed so far:

a. First compute the hereditary suborders that are non-maximal at p.
b. Recursively compute all suborders whose radical idealizer at p is one of the orders

computed so far.

For a given prime p, this procedure produces a tree of orders. If an order O exceeds
the index bound or fails to be Hermite, we need not check its suborders anymore due to
Corollary 5.6.

If O′ is an order, and O ⊆ O′ is a suborder whose radical idealizer at p is O′, then pO′ ⊆ O.
Hence, to compute candidate orders O, we simply check the preimages of all the subrings
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of the (finite) R/p-algebra O′/pO′. We use isomorphism testing between those orders to
enumerate the orders up to isomorphism.

We have implemented this algorithm in Magma [BCP97]. Our code is available on the
web [SV19]. Running this classification gives all definite quaternion orders over a ring of
algebraic integers that are Hermite rings. From this list it is easy to filter the ones having
locally free cancellation.

Remark 6.14. We checked our results against existing lists.

• The hereditary definite quaternion orders that are Hermite rings have been classified
by Vignéras [Vig76], Hallouin–Maire [HM06], and Smertnig [Sme15]. Up to R-algebra
isomorphism there are 168 such orders, of which 149 have locally free cancellation.
Our list is consistent with the (corrected) old classification.
• Kirschmer–Lorch [KL16b] computed all definite quaternion orders with type number

at most 2, and made them available in electronic form [KL16a]. This includes all
orders O with #ClsO = 1, and such an order trivially has locally free cancellation.
Our list is consistent with theirs.
• Estes–Nipp [EN89, Table I] list the 40 definite Hermite quaternion Z-orders. We

found the same number of Z-orders, and we matched their discriminants to the ones
appearing in our list.

Corollary 6.15. Up to R-algebra isomorphism, there are 375 definite Hermite quaternion
orders; of these, 316 have locally free cancellation.

Reducing this list to orders up to ring isomorphism by Galois automorphisms, we obtain
Theorem 1.3. Invariants describing these orders are given in Appendix B. A computer-
readable file containing all the orders is available on the web [SV19].

Looking over the list in Appendix B, we find the following corollary.

Corollary 6.16. If a definite quaternion order O has locally free cancellation, then the base
ring R is factorial.

Note that the analogous statement fails to hold for Hermite orders, with the sole exceptions
being two orders over R = Z[

√
15].

7. Examples and applications

Examples. To give a flavor of the data, we pick out two interesting examples of definite
Hermite quaternion orders. We recall the fundamental fact that there is a bijection between
(twisted) similarity classes of ternary quadratic forms and quaternion orders [Voi19, Chapter
22]: this bijection has a particularly rich history, see Voight [Voi19, Remark 22.6.20] for a
complete bibliography.

Example 7.1. First, let B be the usual Hamiltonian quaternion algebra with i2 = j2 = −1
and ij = −ji. Then O = Z + 2Zi + 2Zj + 2Zij is an order of reduced discriminant 32
that has locally free cancellation and is non-Gorenstein. It has #ClsO = #StClO = 2 but
type number 1. Under the bijection between isomorphism classes of quaternion orders and
similarity classes of ternary quadratic forms, O corresponds to 2(x2+y2+z2). Its Gorenstein
saturation, corresponding to x2 + y2 + z2, is the Lipschitz order Z + Zi+ Zj + Zij.
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There is also an interesting connection with quaternary quadratic forms, discussed in
more detail in the next subsection. We restrict to the case R = Z for illustration. Let O
be a definite quaternion Z-order. Then reduced norm nrd|O : O → Z is a positive definite
integral quaternary quadratic form. Let Gen(nrd|O) be its genus and Cls(nrd|O) the set of
isometry classes in the genus; and let SpGen(nrd|O) its spinor genus and SpCls(nrd|O) the
set of isometry classes in the spinor genus. We have SpCls(nrd|O) ⊆ Cls(nrd|O). Then O is
Hermite if and only # SpCls(nrd|O) = 1, that is, its spinor genus consists of a single isometry
class [EN89, Theorem 1], and we say nrd|O has spinor class number 1. By Proposition 4.8, it
follows that O has locally free cancellation if for every order O′ locally isomorphic to O we
have # SpCls(nrd|O) = 1. Parks [Par74] classified all 40 definite quaternion Z-orders with
spinor class number 1, extending the list of 39 orders with # Cls(nrd|O) = 1 (that is, class
number 1) previously determined by Pall [Pal46], with the sole outlier described as follows.

Example 7.2. Among the 40 definite Hermite Z-orders, there is exactly one order O not
having locally free cancellation. It is the unique definite order with # SpCls(nrd|O) = 1 but
# Cls(nrd|O) 6= 1 found by Parks. The order O is a Bass order of reduced discriminant 27
in the definite quaternion algebra of discriminant 3. With i2 = −3, j2 = −1, and ij = −ji,
it can be represented by O = Z + Z(1

2
+ 3

2
i) + Z(3j) + Z(3

2
j + 1

2
k). Now #ClsO = 4

while #StClO = 2. Under the surjective map st : ClsO → StClO, one class maps to the
trivial class, while the other three classes map to the nontrivial one. This implies that
O is Hermite; see Proposition 4.4. The order O has type number 2, and therefore there
exists a nonisomorphic but locally isomorphic order O′ that is not Hermite. Accordingly,
in st : ClsO′ → StClO′, three classes map to the trivial class, while only one maps to the
nontrivial one.

The order O corresponds to the ternary quadratic form

x2 + 3y2 + 3z2 − 3yz;

On the other hand, the quaternary quadratic form nrd|O has discriminant 729 = 272 and in
the basis above is given by

Q(x, y, z, w) = x2 + 7y2 + 9z2 + 3w2 + xy + 9zw. (7.3)

We have SpCls(Q) = 1 but Cls(Q) 6= 1, indeed Cls(Q) = 3 and Gen(Q) splits into two spinor
genera. In fact, the form Q represents the unique class of primitive quaternary quadratic
form with # SpCls(Q) = 1 but # Cls(Q) 6= 1 [EH19].

More generally, the classification of definite quadratic integral lattices with class number
1, started by Watson in the 1960s, has recently been finished by Lorch–Kirschmer [LK13].
(The rank 2 case assumes GRH.) Earnest–Haensch [EH19] conclude that the lattice found
by Parks remains the sole example with spinor class number 1 but not class number 1 (by
completing the classification for rank 4).

An application to factorizations. Aside from the intrinsic importance of the Hermite and
cancellation properties for the description of isomorphism classes of locally free modules, the
Hermite property has been shown to have important consequences for the factorizations of
elements in an order. This has been observed by Estes–Nipp in [EN89, Est91b] in their study
of factorizations induced by norm factorization (FNF ), as well as more recently in studying
non-unique factorizations in orders by means of arithmetical invariants.
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We give a brief glimpse at this connection, by highlighting some properties of the sets of
lengths. Let O• be the multiplicative monoid of non-zero-divisors of O, that is, the elements
of non-zero reduced norm. An element u ∈ O• is an atom if it cannot be expressed as a
product of two non-units. Every non-unit a ∈ O• can be written as a product of atoms, but
in general not uniquely so. If a = u1 · · ·uk, with atoms ui, then k is a length of a, and we
write L(a) ⊆ Z>0 for the set of lengths of a. By considering the reduced norm, it is easily
seen that these sets are finite. If #L(a) > 2, then #L(ak) > k+ 1. Hence, the sets of lengths
are either all singletons, in which case O• is half-factorial, or become arbitrarily large. If
L(a) = {l1 < . . . < lm}, let ∆(a) = {l2 − l1, . . . , lm − lm−1}, and let ∆(O•) =

⋃
a∈O• ∆(a)

denote the set of distances of the monoid O•.
If O is a Hermite hereditary order, then O• is a transfer Krull monoid of finite type. This

follows from [Sme19, Theorem 4.4], after recognizing the occurring class group as isomorphic
to StClO. For maximal orders, this is more explicit in [Sme13, Theorem 1.1]. For hereditary
orders satisfying the Eichler condition, that is dimF B > 4 or B is an indefinite quaternion
algebra, the result can also be obtained from a theorem of Estes [Est91a].

The fact that O is a transfer Krull monoid of finite type, implies that many questions on
factorizations in O, in particular all the ones on sets of lengths, can be reduced to questions in
combinatorial and additive number theory over finite abelian groups, specifically the stable
class group StClO. See the surveys [Ger16, Sch16] as a starting point into the extensive
literature; and [Tri19, GZ19, Zho19, GS19] for recent progress. In particular, the set of
distances ∆(O•) is finite, indeed ∆(O•) = {1, . . . , D} for some D ∈ Z>0. The sets L(a)
satisfy the Structure Theorem for Sets of Lengths [Ger16, Theorem 2.6 and Definition 2.5],
roughly saying that each L(a) is a finite union of (finite) arithmetical progressions with
distances d ∈ ∆(O•), and possibly some gaps at the beginning and the end.

Let us now restrict to O a maximal order. Then, if O is not Hermite, it is known that
O is not a transfer Krull monoid [Sme13, Theorem 1.2]. Not just does this structure break
down, the factorization properties of O are totally different. For instance, although ∆(O•)
was finite before, now ∆(O•) = Z>1. Indeed, for any l > 0, there exist elements a ∈ O• with
L(a) = {3} ∪ l + E, where E is a non-empty subset of {2, 3, 4} [Sme13, Proposition 7.2].
Thus, the Hermite property provides a sharp dividing line between two completely different
regimes as far as the factorizations of elements are concerned.

Appendix A. Comparison with the criterion of Vignéras

To check whether an order is a Hermite ring, we have checked if the equality

mass(Cls[R]O) = [O× : R×]−1

holds. This is very close to Vignéras’s criterion [Vig76] but not precisely the same. In this
appendix, we show how to derive her original criterion from ours.

Theorem A.1 (Vignéras [Vig76, Théorème 3]). A definite order O ⊆ B is a Hermite ring
if and only if

2[O× : R×] = τ(Ô1)[F×>0 ∩ nrd(Ô×) : R×2], (A.2)

where τ is the Tamagawa measure. For a hereditary order O, writing N = DM with D =
discB, we have

τ(Ô1)−1 = 2−nζF (−1)
∏
p|D

(1− Nm p)
∏
p|M

(1 + Nm p)
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We will need the following small lemma.

Lemma A.3. Let O ⊆ O′ be orders and let p be a prime ideal of R. Then

[O′×p : O×p ]

[nrd(O′×p ) : nrd(O×p )]
= [O′1p : O1

p ].

Proof. Consider the diagram

1 O1
p O×p nrd(O×p ) 1

1 O′1p O′×p nrd(O′×p ) 1.

nrd

nrd

By the snake lemma, there is a short exact sequence of the cokernels

1 O′1p /O
1
p O′×p /O

×
p nrd(O′×p )/ nrd(O×p ) 1

which gives the result. �

Proof of Theorem A.1. By Proposition 4.4, O is a Hermite ring if and only if mass(Cls[R]O) =
[O× : R×]−1. Therefore, we need to show

mass(Cls[R]O) = 2τ(Ô1)−1[F×>0 ∩ nrd(Ô×) : R×2]−1. (A.4)

We first consider the case where O is hereditary. From the mass formula (Theorem 6.1),
and Proposition 5.19,

mass(Cls[R]O) =
mass(ClsO)

#ClG(O)R
=

|ζF (−1)|Nm(N)
∏

p|N λ(O, p)

2n−1[R×>0 ∩ nrd(Ô×) : R×2][R̂× : nrd(Ô×)]
.

Since O is hereditary,

Nm(N)
∏
p|N

λ(O, p) =
∏
p|D

(Nm p− 1)
∏
p|M

(Nm p + 1) = (−1)n
∏
p|D

(1− Nm p)
∏
p|M

(1 + Nm p).

Here, the sign can be expressed as (−1)n, because B is ramified at an even number of places,
since B is definite it is ramified at all archimedean places, and D is the product of all non-
archimedean places at which B is ramified. Moreover, we have ζF (−1) = |ζF (−1)|(−1)n, we

have F×>0∩nrd(Ô×) = R×>0∩nrd(Ô×), and finally nrd(O×p ) = R×p for all prime ideals p (since

O is an Eichler order). Comparing with the expression for τ(Ô1)−1, we observe that (A.4)
holds.

Now suppose that O is not hereditary, and let O′ be a hereditary order containing O.

Then mass(Cls[R]O′) = 2τ(Ô′1)−1[R×>0 : R×2]−1 by what we already showed. Now

τ(Ô1)−1 = [Ô′1 : Ô1]τ(Ô′1)−1.

On the other hand,

mass(Cls[R]O) =
#Cl+R

#ClG(O)R
[Ô′× : Ô×] mass(Cls[R]O′),
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by Theorem 5.11. Now,

#ClG(O)R

#Cl+R
=

[R×>0 ∩ nrd(Ô×) : R×2]

[R×>0 : R×2]
[R̂× : nrd(Ô×)]

by Proposition 5.19. By Lemma A.3,

[Ô′1 : Ô1] =
[Ô′× : Ô×]

[R̂× : nrd(Ô×)]
.

Putting everything together, the claim follows. �
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Appendix B. Tables

The following tables list invariants describing all definite quaternion orders O that are
Hermite rings, hence all orders with locally free cancellation. For simplicity, orders are listed
up to ring isomorphism not up to R-algebra isomorphism. That is, we use automorphisms
of the base field to identify some of the orders. The corresponding multiplicity is listed in
the last column of the tables. Thus, there are 303 entries in the tables, but 375 orders up to
R-algebra automorphism.

For example, in R = Z[(1 +
√

5)/2] the prime number 11 splits, so that 11R = pq. Let B
be the quaternion algebra over F = Q[

√
5] that is ramified only at the archimedean primes

(corresponding to n = 2, d = 5, D = 1 in the table below). In B there exist two hereditary
orders O, O′ with N := Nm(discrd(O)) = Nm(discrd(O′)) = 11 having cancellation. One of
these is maximal at p and non-maximal at q, while the other one is non-maximal at p and
maximal at q. However, the Galois automorphism of F maps p to q, and, extending it to a
ring automorphism of B, it maps O to O′. Thus, O and O′ are isomorphic as rings but not
as R-algebras. We record only one entry in the table (the line with n = 2, d = 5, D = 1,
N = 11), but note the multiplicity 2 in the column labeled by ‘#’.

In the tables, we use the following notation.

• n = [F : Q] is the degree of the base field F .
• d is the discriminant of F .
• D = NmF |Q(discB) is the norm of the discriminant of the quaternion algebra B over
F .
• N = NmF |Q(discrdO) is the norm of the reduced discriminant of the order O ⊆ B.

An empty entry in one of these columns means that the corresponding structure (quaternion
algebra, respectively, the base field), is the same as in the previous line. For the number fields
appearing in the tables, the pair (n, d) uniquely characterizes them up to field isomorphism.

For a prime p of R, let k := R/p be the residue class field of p. Recall that the Eichler
symbol of a quaternion R-order O is defined as

(O | p) =

(
O

p

)
=


∗, if Op/ radOp ' M2(k);

1, if Op/ radOp ' k × k;

0, if Op/ radOp ' k; and

−1, if Op/ radOp is a (separable) quadratic field extension of k.

By residually inert, respectively, residually quadratic, we mean an order for which (O | p) ∈
{∗,−1}, respectively, (O | p) ∈ {∗,±1} for all prime ideals p of R.

The next column lists the strongest property that the order possesses (globally), among
the following:

hereditary Eichler

maximal residually quadratic Bass Gorenstein.

residually inert
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The column labeled ‘c’ contains an entry ‘c’ whenever the order listed has locally free
cancellation, and is empty otherwise (that is, the order is a Hermite order but does not have
locally free cancellation).

Next we list local Eichler symbols. The data are organized by rational primes. For each
prime p, if there is a prime ideal p of R over p for which Op is not maximal, we list the
local Eichler symbol (O | p) for all p over p. Here, the primes lying over p are sorted first in
ascending order of Nm p, then by ascending ramification index. For easier readability, if O
is maximal at every p containing p, we do not list any data. This means (O | p) = ∗ if the
quaternion algebra is unramified at p, and (O | p) = −1 if the algebra is ramified at p.

Next, we list the cardinality of the class set of locally free right ideals of O, of the stable
class group of O (which is isomorphic to ClG(O)R), and the class group of R itself. If the
value is 1, we omit the entry for easier readability. Next, we list the cardinality of the class
set of locally free right ideals of O, of the stable class group of O (which is isomorphic to
ClG(O)R), the type number t(O), and the class group of R itself. If the value is 1, we omit
the entry for easier readability.

The type number is the number of isomorphism classes of orders that are locally isomorphic
to O; again we suppress the value 1. Observe that if t(O) > 1 and O has cancellation, then
the orders that are locally isomorphic but not isomorphic to O also have cancellation, and
therefore also appear in the tables. Several instances of this can be seen over in the algebra
with N = 1 over the field Q[

√
12].

The final column lists the multiplicity with which the entry should be counted, to count
the orders up to R-algebra isomorphism. Again, if the value is 1, we omit the entry.

The tables are intended to give an overview over the orders, not to characterize them up
to isomorphism. A computer-readable list of all the orders in the table, including generators,
is available electronically at [SV19].
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Table 1. Definite Hermite quaternion orders over Z.

D N c 2 3 5 11 # Cls(O) # StCl(O) t(O)

2 2 maximal c -1
4 Bass c 0
6 hereditary c -1 1
8 Bass c 0
8 residually inert c -1

10 hereditary c -1 1
12 Bass c 0 1
16 non-Gorenstein c 0
16 Bass c 0
16 Bass c 0 2 2
18 residually inert c -1 -1
18 Eichler c -1 1
18 Bass c -1 0 2 2
22 hereditary c -1 1
32 Bass c 0 2 2
32 non-Gorenstein c 0 2 2
36 Bass c 0 0 2 2
50 Bass c -1 0 2 2
54 non-Gorenstein c -1 0 2 2
54 Bass c -1 0 2 2
64 Gorenstein c 0 4 4

3 3 maximal c -1
6 hereditary c 1 -1
9 Bass c 0 2 2

12 residually inert c -1 -1
12 Bass c 0 -1
12 Eichler c 1 -1
18 Bass c 1 0 2 2
24 non-Gorenstein c 0 -1
27 Bass c 0 2 2
27 Bass 0 4 2 2
36 Bass c 0 0 2 2
48 Gorenstein c 0 -1 2 2

5 5 maximal c -1
10 hereditary c 1 -1
20 Bass c 0 -1
25 Bass c 0 2 2

7 7 maximal c
28 residually inert c -1

13 13 maximal c

27



Table 2: Definite Hermite quaternion orders over rings of algebraic in-
tegers in number fields of degree n > 2.

n d D N c 2 3 5 7 11 19 23 29 59 # Cls(O) # StCl(O) t(O) # Cl(R) #

2 5 1 1 maximal c
4 hereditary c 1
5 hereditary c 1
9 hereditary c 1

11 hereditary c 1, * 2
16 Bass c 0
16 Eichler c 1
16 residually inert c -1
19 hereditary c *, 1 2
20 hereditary c 1 1
25 Eichler c 1
25 Bass c 0 2 2
25 residually inert c -1
29 hereditary c *, 1 2
44 hereditary c 1 1, * 2
59 hereditary c *, 1 2
64 non-Gorenstein c 0

100 Bass c 1 0 2 2
121 Bass c 0, * 2 2 2
125 Bass 0 6 2 2
125 Bass c 0 2 2
125 non-Gorenstein c 0 2 2
256 Gorenstein c 0 4 4

20 20 maximal c -1 -1
80 Bass c 0 -1

44 44 maximal c -1 -1, * 2
8 1 1 maximal c

2 hereditary c 1
4 Eichler c 1
4 residually inert c -1
4 Bass c 0
7 hereditary c *, 1 2
8 non-Gorenstein c 0
8 Eichler c 1
8 Bass c 0

14 hereditary c 1 *, 1 2
16 non-Gorenstein c 0
16 Gorenstein c 0

2
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Table 2: Definite Hermite quaternion orders over rings of algebraic in-
tegers in number fields of degree n > 2.

n d D N c 2 3 5 7 11 19 23 29 59 # Cls(O) # StCl(O) t(O) # Cl(R) #

16 Eichler c 1
16 residually inert c -1
16 Bass c 0
16 Bass c 0 2 2
16 Gorenstein c 0 2 2
23 hereditary c *, 1 2
28 Bass c 0 *, 1 2
32 non-Gorenstein c 0 2 2
32 Bass c 0 2 2
32 non-Gorenstein c 0
32 non-Gorenstein c 0
49 Bass c *, 0 2 2 2
64 Gorenstein c 0 2 2
64 non-Gorenstein c 0 2 2
64 Gorenstein c 0 2 2

14 14 maximal c -1 *, -1 2
18 18 maximal c -1 -1

36 Bass c 0 -1
50 50 maximal c -1 -1

12 1 1 maximal c 2 2 2
1 maximal c 2 2 2
2 hereditary c 1 2 2
3 hereditary c 1 2 2
4 Eichler c 1 2 2 2
4 residually inert c -1 2 2 2
4 Eichler c 1 2 2 2
4 Bass c 0 2 2
4 residually inert c -1 2 2 2
6 hereditary c 1 1 2 2
8 Eichler c 1 2 2
8 non-Gorenstein c 0 2 2 2
8 Bass c 0 2 2
8 non-Gorenstein c 0 2 2 2
9 residually inert -1 3 2 3
9 Eichler 1 3 2 3
9 Bass c 0 2 2

11 hereditary c 1, * 2 2 2
12 Bass c 0 1 2 2

2
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Table 2: Definite Hermite quaternion orders over rings of algebraic in-
tegers in number fields of degree n > 2.

n d D N c 2 3 5 7 11 19 23 29 59 # Cls(O) # StCl(O) t(O) # Cl(R) #

12 residually quadratic c -1 1 2 2
12 Eichler c 1 1 2 2
16 non-Gorenstein c 0 2 2
16 Gorenstein 0 3 2 2
16 Gorenstein 0 3 2 2
16 residually inert -1 3 2 3
16 Bass c 0 2 2
16 Eichler 1 3 2 3
18 Bass c 1 0 2 2
23 hereditary c 1, * 2 2 2
24 non-Gorenstein c 0 1 2 2
27 non-Gorenstein 0 4 2 2
27 Bass c 0 2 2 2
32 Bass c 0 2 2 2
32 non-Gorenstein 0 3 2 2
32 non-Gorenstein 0 5 2 2
32 Gorenstein c 0 2 2
36 Bass c 0 0 2 2
36 residually inert -1 -1 4 2 3
36 residually quadratic -1 1 4 2 3
44 residually quadratic c -1 1, * 2 2 2

6 6 maximal c -1 -1 2 2
12 Bass c 0 -1 2 2
18 Bass c -1 0 2 2
36 Bass c 0 0 2 2
66 hereditary c -1 -1 1, * 2 2 2

26 26 maximal c -1 2 2 2
39 39 maximal c -1 2 2 2
50 50 maximal c -1 -1 2 2

13 1 1 maximal c
3 hereditary c *, 1 2
9 Eichler c *, 1 2
9 residually inert c *, -1 2
9 Bass c *, 0 2 2 2

16 residually inert c -1
27 non-Gorenstein c *, 0 2 2 2
27 Bass c *, 0 2 2 2

12 12 maximal c -1 *, -1 2

3
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Table 2: Definite Hermite quaternion orders over rings of algebraic in-
tegers in number fields of degree n > 2.

n d D N c 2 3 5 7 11 19 23 29 59 # Cls(O) # StCl(O) t(O) # Cl(R) #

36 Bass c -1 *, 0 2 2 2
17 1 1 maximal c

2 hereditary c 1, * 2
4 Eichler c 1, * 2
4 residually inert c -1, * 2
4 Bass c 0, * 2
8 non-Gorenstein c 0, * 2
8 residually quadratic c 1, -1 2

16 Gorenstein c 0, * 2 2 2
16 Bass c -1, 0 2

21 1 1 maximal c 2 2 2
1 maximal c 2 2 2
3 hereditary c 1 2 2
5 hereditary c *, 1 2 2 2
9 Eichler 1 4 2 4
9 residually inert -1 4 2 4
9 Bass c 0 4 4

16 residually inert -1 3 2 3
27 non-Gorenstein 0 8 4 2
27 Bass c 0 4 4 2

12 12 maximal c -1 -1 2 2
36 Bass c -1 0 4 4

20 20 maximal c -1 *, -1 2 2 2
24 1 1 maximal 3 2 3

3 hereditary 1 4 2 3
4 residually inert -1 3 2 3
9 Bass 0 4 2 3

16 residually inert -1 4 2 4
6 6 maximal c -1 -1 2 2

18 Bass c -1 0 2 2
15 15 maximal c -1 *, -1 2 2 2

28 1 1 maximal 3 2 3
2 hereditary 1 4 2 3
4 residually inert -1 3 2 3
4 Eichler 1 5 2 4
4 Bass 0 4 2 3
8 non-Gorenstein 0 5 2 3
9 residually inert *, -1 4 2 4 2
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Table 2: Definite Hermite quaternion orders over rings of algebraic in-
tegers in number fields of degree n > 2.

n d D N c 2 3 5 7 11 19 23 29 59 # Cls(O) # StCl(O) t(O) # Cl(R) #

6 6 maximal c -1 *, -1 2 2 2
12 Bass c 0 *, -1 2 2 2

33 1 1 maximal 3 2 3
4 residually inert -1, * 3 2 3 2

16 residually inert -1, -1 5 2 3
6 6 maximal c -1, * -1 2 2 2

24 residually inert c -1, -1 -1 2 2 2
60 1 1 maximal 8 4 8 2

4 residually inert -1 10 4 8 2
69 1 1 maximal 5 2 5

3 49 7 7 maximal c -1
8 8 maximal c -1

13 13 maximal c 3
29 29 maximal c *, *, -1 3
43 43 maximal c 3

81 3 3 maximal c -1
9 Bass c 0 2 2

24 hereditary c 1 -1
27 Bass c 0 2 2
27 Bass 0 4 2 2
72 Bass c 1 0 2 2

19 19 maximal c *, -1, * 3
37 37 maximal c 3

148 2 2 maximal c -1
4 Bass c 0

10 hereditary c -1 *, 1
50 Bass c -1 *, 0 2 2

5 5 maximal c *, -1
10 hereditary c 1 *, -1
20 Bass c 0 *, -1
25 Bass c *, 0 2 2

13 13 maximal c
169 5 5 maximal c -1, *, * 3

25 Bass c 0, *, * 2 2 3
13 13 maximal c

229 2 2 maximal c *, -1 2 2
4 Bass c *, 0 2 2
8 residually inert c *, -1 2 2
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Table 2: Definite Hermite quaternion orders over rings of algebraic in-
tegers in number fields of degree n > 2.

n d D N c 2 3 5 7 11 19 23 29 59 # Cls(O) # StCl(O) t(O) # Cl(R) #

8 Bass c *, 0 2 2
16 non-Gorenstein c *, 0 2 2
16 Bass c *, 0 2 2
32 residually inert c -1, -1 2 2

4 4 maximal c -1, * 2 2
16 residually inert c -1, -1 2 2

7 7 maximal c *, -1 2 2
28 residually inert c *, -1 *, -1 2 2

257 3 3 maximal c *, -1 2 2
5 5 maximal c *, -1 2 2

25 Bass c *, 0 4 4
7 7 maximal c *, -1 2 2

316 2 2 maximal c -1, *
4 Bass c 0, *
4 hereditary c -1, 1
8 Bass c -1, 0

321 3 3 maximal c -1, *
9 Bass c 0, * 2 2

4 725 1 1 maximal c
11 hereditary c *, 1, * 2
19 hereditary c *, 1, * 2
29 hereditary c *, 1

121 Bass c *, 0, * 2 2 2
1125 1 1 maximal c 2 2 2

1 maximal c 2 2 2
5 hereditary c 1 2 2
9 hereditary c 1 2 2

25 residually inert -1 4 2 4
25 Eichler 1 4 2 4
29 hereditary c 1, *, *, * 2 2 4
59 hereditary c 1, *, *, * 2 2 4

80 80 maximal c -1 -1 2 2
1957 1 1 maximal c

3 hereditary c *, 1
9 Eichler c *, 1
9 residually inert c *, -1
9 Bass c *, 0 2 2

27 non-Gorenstein c *, 0 2 2

3
3



Table 2: Definite Hermite quaternion orders over rings of algebraic in-
tegers in number fields of degree n > 2.

n d D N c 2 3 5 7 11 19 23 29 59 # Cls(O) # StCl(O) t(O) # Cl(R) #

27 Bass c *, 0 2 2
2000 1 1 maximal 3 2 3

5 hereditary 1 4 2 3
25 Bass 0 6 2 3

20 20 maximal c -1 -1 2 2
2304 1 1 maximal 3 2 3

4 residually inert -1 3 2 3
16 residually inert -1 5 2 5

18 18 maximal c -1 -1 2 2
2777 1 1 maximal c

2 hereditary c *, 1
4 Eichler c *, 1
4 residually inert c *, -1
4 Bass c *, 0
8 non-Gorenstein c *, 0

16 Gorenstein c *, 0 2 2
4352 1 1 maximal 4 2 4

2 hereditary 1 6 2 4
4 Eichler 1 8 2 6
4 residually inert -1 4 2 4
4 Bass 0 6 2 4
8 non-Gorenstein 0 8 2 4

14 14 maximal c -1 *, -1, * 2 2 2
4752 1 1 maximal 4 2 4

12 12 maximal c -1 -1 2 2
5125 1 1 maximal 4 2 4
9909 1 1 maximal 5 2 5

10512 1 1 maximal 8 4 8 2

5 24217 5 5 maximal c *, -1
25 Bass c *, 0 2 2

36497 3 3 maximal c *, -1 2 2
38569 7 7 maximal c *, -1 2 2

13 13 maximal c 2 2

6 453789 1 1 maximal 3 2 3
1397493 1 1 maximal 6 2 6

3
4
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