ON THE DAVENPORT CONSTANT AND GROUP ALGEBRAS

DANIEL SMERTNIG

Abstract

For a finite abelian group G and a splitting field K of G, let $\mathrm{d}(G, K)$ denote the largest integer $l \in \mathbb{N}$ for which there is a sequence $S=g_{1} \cdot \ldots \cdot g_{l}$ over G such that $\left(X^{g_{1}}-a_{1}\right) \cdot \ldots \cdot\left(X^{g_{l}}-a_{l}\right) \neq 0 \in K[G]$ for all $a_{1}, \ldots, a_{l} \in K^{\times}$. If $\mathrm{D}(G)$ denotes the Davenport constant of G, then there is the straightforward inequality $\mathrm{D}(G)-1 \leq \mathrm{d}(G, K)$. Equality holds for a variety of groups, and a standing conjecture of W. Gao et.al. states that equality holds for all groups. We offer further groups for which equality holds, but we also give the first examples of groups G for which $\mathrm{D}(G)-1<\mathrm{d}(G, K)$ holds. Thus we disprove the conjecture.

1. Introduction and Main Result

Let G be an additive finite abelian group. For a (multiplicatively written) sequence $S=g_{1} \cdot \ldots \cdot g_{l}$ over $G,|S|=l$ is called the length of S, and S is said to be zero-sum free if $\sum_{i \in I} g_{i} \neq 0$ for every nonempty subset $I \subset[1, l]$. Let $\mathrm{d}(G)$ denote the maximal length of a zero-sum free sequence over G. Then $\mathrm{d}(G)+1$ is the Davenport constant of G, a classical constant from Combinatorial Number Theory (for surveys and historical comments, the reader is referred to [3], [8, Chapter 5], [7]). In general, the precise value of $\mathrm{d}(G)$ (in terms of the group invariants of G) and the structure of the extremal sequences is unknown, see $[12,1,13,10,11,4,14,15,9]$ for recent progress.

Group algebras $R[G]$ - over suitable commutative rings R - have turned out to be powerful tools for a great variety of questions from combinatorics and number theory, among them the Davenport constant. We recall the definition of an invariant (involving group algebras) which was used for the investigation of the Davenport constant since the 1960s.

For a commutative ring R, let $\mathrm{d}(G, R) \in \mathbb{N} \cup\{\infty\}$ denote the supremum of all $l \in \mathbb{N}$ having the following property:

There is some sequence $S=g_{1} \cdot \ldots \cdot g_{l}$ of length l over G such that

$$
\left(X^{g_{1}}-a_{1}\right) \cdot \ldots \cdot\left(X^{g_{l}}-a_{l}\right) \neq 0 \in R[G] \quad \text { for all } \quad a_{1}, \ldots, a_{l} \in R \backslash\{0\} .
$$

If S is zero-sum free, R is an integral domain, $a_{1}, \ldots, a_{l} \in R \backslash\{0\}$ and

$$
f=\left(X^{g_{1}}-a_{1}\right) \cdot \ldots \cdot\left(X^{g_{l}}-a_{l}\right)=\sum_{g \in G} c_{g} X^{g}
$$

then $c_{0} \neq 0$. Hence $f \neq 0$, and it follows that

$$
\mathrm{d}(G) \leq \mathrm{d}(G, R)
$$

The following Theorem A was proved by P. van Emde Boas, D. Kruyswijk and J.E. Olson in the 1960s (in fact, they did not explicitly define the invariants $\mathrm{d}(G, K)$ but got these results implicitly). Historical remarks and proofs in the present terminology may be found in [7, Section 2.2] and [8, Theorem 5.5.9]; see also [5].

[^0]Theorem A. Let G be a finite abelian group with $\exp (G)=n \geq 2$.

1. Let K be a splitting field of G with $\operatorname{char}(K) \nmid \exp (G)$. Then

$$
\mathrm{d}(G, K) \leq(n-1)+n \log \frac{|G|}{n}
$$

2. If G is a p-group, then $\mathrm{d}(G)=\mathrm{d}(G, \mathbb{Z} / p \mathbb{Z})$.

Note that for a cyclic group G of order n, the above upper bound implies that $\mathrm{d}(G)=\mathrm{d}(G, K)=n-1$, since $\mathrm{d}\left(\mathrm{C}_{n}\right) \geq n-1$ can easily be seen. Only recently, W. Gao and Y. Li showed that $\mathrm{d}\left(\mathrm{C}_{2} \oplus \mathrm{C}_{2 n}\right)=$ $\mathrm{d}\left(\mathrm{C}_{2} \oplus \mathrm{C}_{2 n}, K\right)([6$, Theorem 3.3]). We extend their result, but we also show that Conjecture 3.4 in [6], stating that $\mathrm{d}(G)=\mathrm{d}(G, K)$ for all groups G, does not hold. Here is the main result of the present paper.

Theorem 1.1. Let $G=C_{p} \oplus C_{p n}$ with $p \in \mathbb{P}, n \in \mathbb{N}$ and let K be a splitting field of G.

1. If $p \leq 3$, then $\mathrm{d}(G)=\mathrm{d}(G, K)$.
2. If $p \geq 5$ and $n \geq 2$, then $\mathrm{d}(G)<\mathrm{d}(G, K)$.

2. Preliminaries

Let \mathbb{N} denote the set of positive integers, $\mathbb{P} \subset \mathbb{N}$ the set of prime numbers, and let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For real numbers $a, b \in \mathbb{R}$, we set $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$. For $n \in \mathbb{N}$ and $p \in \mathbb{P}$, let C_{n} denote a cyclic group with n elements, $\mathrm{v}_{p}(n) \in \mathbb{N}_{0}$ the p-adic valuation of n with $\mathrm{v}_{p}(p)=1$ and $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ the finite field with p elements.

Let G be an additive finite abelian group. Suppose that $G \cong C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $1<n_{1}|\ldots| n_{r}$. Then $r=\mathrm{r}(G)$ is the $r a n k$ of $G, n_{r}=\exp (G)$ is the exponent of G, and we define $\mathrm{d}^{*}(G)=\sum_{i=1}^{r}\left(n_{i}-1\right)$. If $|G|=1$, then the exponent $\exp (G)=1$, the rank $r(G)=0$, and we set $\mathrm{d}^{*}(G)=0$. If $A, B \subset G$ are nonempty subsets, then $A+B=\{a+b \mid a \in A, b \in B\}$ is their sumset. We will make use of a Theorem of Cauchy-Davenport which runs as follows (for a proof see [8, Cor. 5.2.8.1]).

Lemma 2.1. Let G be a cyclic group of order $p \in \mathbb{P}$ and let $A, B \subset G$ be nonempty subsets. Then $|A+B| \geq \min \{|A|+|B|-1, p\}$.

Sequences over groups. Let $\mathcal{F}(G)$ be the (multiplicatively written) free abelian monoid with basis G. The elements of $\mathcal{F}(G)$ are called sequences over G. We write sequences $S \in \mathcal{F}(G)$ in the form

$$
S=\prod_{g \in G} g^{\mathrm{v}_{g}(S)}, \quad \text { with } \quad \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \quad \text { for all } \quad g \in G
$$

We call $\mathrm{v}_{g}(S)$ the multiplicity of g in S, and we say that S contains g if $\mathrm{v}_{g}(S)>0$. A sequence S_{1} is called a subsequence of S if $S_{1} \mid S$ in $\mathcal{F}(G)$ (equivalently, $\vee_{g}\left(S_{1}\right) \leq \mathrm{v}_{g}(S)$ for all $g \in G$). If a sequence $S \in \mathcal{F}(G)$ is written in the form $S=g_{1} \cdot \ldots \cdot g_{l}$, we tacitly assume that $l \in \mathbb{N}_{0}$ and $g_{1}, \ldots, g_{l} \in G$. For a sequence

$$
S=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G} g^{\mathrm{v}_{g}(S)} \in \mathcal{F}(G)
$$

we call

$$
\begin{aligned}
& |S|=l=\sum_{g \in G} \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \quad \text { the length of } S \text { and } \\
& \sigma(S)=\sum_{i=1}^{l} g_{i}=\sum_{g \in G} \mathrm{v}_{g}(S) g \in G \quad \text { the sum of } S .
\end{aligned}
$$

The sequence S is called a zero-sum sequence if $\sigma(S)=0$, and it is called zero-sum free if $\sum_{i \in I} g_{i} \neq 0$ for all $\emptyset \neq I \subset[1, l]$ (equivalently, if there is no nontrivial zero-sum subsequence). We denote by

- $\mathrm{D}(G)$ the smallest integer $l \in \mathbb{N}$ such that every sequence S over G of length $|S| \geq l$ has a nontrivial zero-sum subsequence;
- $\mathrm{d}(G)$ the maximal length of a zero-sum free sequence over G.

Then $\mathrm{D}(G)$ is called the Davenport constant of G, and we have trivially that

$$
\mathrm{d}^{*}(G) \leq \mathrm{d}(G)=\mathrm{D}(G)-1
$$

We will use without further mention that equality holds for p-groups and for groups of rank $r(G) \leq 2$ ([8, Theorems 5.5.9 and 5.8.3]) (equality holds for further groups, but not in general [7, Corollary 4.2.13]).

Group algebras and characters. Let R be a commutative ring (throughout, we assume that R has a unit element $1 \neq 0$) and G a finite abelian group. The group algebra $R[G]$ of G over R is a free R-module with basis $\left\{X^{g} \mid g \in G\right\}$ (built with a symbol X), where multiplication is defined by

$$
\left(\sum_{g \in G} a_{g} X^{g}\right)\left(\sum_{g \in G} b_{g} X^{g}\right)=\sum_{g \in G}\left(\sum_{h \in G} a_{h} b_{g-h}\right) X^{g}
$$

We view R as a subset of $R[G]$ by means of $a=a X^{0}$ for all $a \in R$. An element of R is a zero-divisor [a unit] of $R[G]$ if and only if it is a zero-divisor [a unit] of R.

Let K be a field, G a finite abelian group with $\exp (G)=n \in \mathbb{N}$ and $\mu_{n}(K)=\left\{\zeta \in K \mid \zeta^{n}=1\right\}$ the group of n-th roots of unity in K. An n-th root of unity ζ is called primitive if $\zeta^{m} \neq 1$ for all $m \in[1, n-1]$, and we denote by $\mu_{n}^{*}(K) \subset \mu_{n}(K)$ the subset of all primitive n-th roots of unity. We denote by $\operatorname{Hom}\left(G, K^{\times}\right)=\operatorname{Hom}\left(G, \mu_{n}(K)\right)$ the character group of G with values in K (whose operation is given by pointwise multiplication with the constant 1 function as identity), and we briefly set $\widehat{G}=\operatorname{Hom}\left(G, K^{\times}\right)$if there is no danger of confusion. Every character $\chi \in \widehat{G}$ has a unique extension to a K-algebra homomorphism $\chi: K[G] \rightarrow K$ (again denoted by χ) acting by means of

$$
\chi\left(\sum_{g \in G} a_{g} X^{g}\right)=\sum_{g \in G} a_{g} \chi(g)
$$

We call K a splitting field of G if $\left|\mu_{n}(K)\right|=n$. Let K be a splitting field of G and $\widehat{G}=\operatorname{Hom}\left(G, K^{\times}\right)$. We gather the properties needed for the sequel (for details see [8, Section 5.5] and [2, §17]). We have $\operatorname{char}(K) \nmid \exp (G),|G|=|G| 1_{K} \in K^{\times}, G \cong \operatorname{Hom}\left(G, K^{\times}\right)$, and the map

$$
\operatorname{Hom}\left(G, K^{\times}\right) \times G \rightarrow K^{\times}, \quad \text { defined by } \quad(\chi, g) \mapsto \chi(g)
$$

is a non-degenerate pairing (that is, if $\chi(g)=1$ for all $\chi \in \widehat{G}$, then $g=0$, and if $\chi(g)=1$ for all $g \in G$, then clearly $\chi=1$, the constant 1 function).

Furthermore, the Orthogonality Relations hold ([8, Proposition 5.5.2]), and for every $f \in K[G]$, we have (see [8, Proposition 5.5.2])

$$
f=0 \in K[G] \text { if and only if } \chi(f)=0 \text { for every } \chi \in \operatorname{Hom}\left(G, K^{\times}\right)
$$

Moreover, if $\chi(f) \neq 0$ for all $\chi \in \operatorname{Hom}\left(G, K^{\times}\right)$, then $f \in K[G]^{\times}$; explicitly, a simple calculation using the Orthogonality Relations shows that

$$
f^{-1}=\frac{1}{|G|} \sum_{g \in G}\left(\sum_{\chi \in \operatorname{Hom}\left(G, K^{\times}\right)} \frac{\chi(-g)}{\chi(f)}\right) X^{g}
$$

For a subgroup $H \subset G$, we set

$$
H^{\perp}=\{\chi \in \widehat{G} \mid \chi(h)=1 \text { for all } h \in H\}
$$

We clearly have a natural isomorphism $H^{\perp} \cong \widehat{G / H}$.

3. Proof of the Theorem

We fix our notation, which will remain valid throughout this section. Let $G=\mathrm{C}_{m} \oplus \mathrm{C}_{m n}$ with $m \in \mathbb{N}_{\geq 2}$, $n \in \mathbb{N}$ and let $e_{1}, e_{2} \in G$ be such that $G=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}\right\rangle, \operatorname{ord}\left(e_{1}\right)=m$ and ord $\left(e_{2}\right)=m n$. Furthermore, let K be a splitting field of $G, \zeta \in \mu_{m n}^{*}(K)$, and let $\psi, \varphi \in \widehat{G}$ be defined by $\psi\left(e_{1}\right)=\zeta^{n}, \psi\left(e_{2}\right)=1$ and $\varphi\left(e_{1}\right)=1, \varphi\left(e_{2}\right)=\zeta$. Then $\operatorname{ord}(\psi)=m, \operatorname{ord}(\varphi)=m n$ and $\widehat{G}=\langle\psi\rangle \oplus\langle\varphi\rangle$.

Note that, in the case $m=p \in \mathbb{P}$,

$$
\theta: \begin{cases}\mathbb{F}_{p} \times\left\langle\psi, \varphi^{n}\right\rangle & \rightarrow\left\langle\psi, \varphi^{n}\right\rangle \\ (k+p \mathbb{Z}, \chi) & \mapsto \chi^{k}\end{cases}
$$

is an \mathbb{F}_{p}-vector space structure on $\left(\left\langle\psi, \varphi^{n}\right\rangle, \cdot\right)$. Whenever $\left\langle\psi, \varphi^{n}\right\rangle$ is considered as \mathbb{F}_{p}-vector space it is done so with respect to θ.

The following Lemmas 3.1 and 3.2 will allow us to restrict ourselves to sequences consisting of certain special elements in the proof of Theorem 1.1.1. Lemma 3.2 is a generalization of a statement used by W. Gao and Y. Li in their proof of the case $m=2[6]$.

Lemma 3.1. Let R be a commutative ring, $g_{1} \ldots . g_{l} \in \mathcal{F}(G)$ a sequence over G, and let $a_{1}, \ldots, a_{l} \in R \backslash\{0\}$ be such that $\left(X^{g_{1}}-a_{1}\right) \cdot \ldots \cdot\left(X^{g_{l}}-a_{l}\right)=0 \in R[G]$ Then, for any $k_{1}, \ldots, k_{l} \in \mathbb{N}$, also $\left(X^{k_{1} g_{1}}-a_{1}^{k_{1}}\right) \cdot \ldots$. $\left(X^{k_{l} g_{l}}-a_{l}^{k_{l}}\right)=0 \in R[G]$.

Proof. For all $i \in[1, l]$,

$$
X^{k_{i} g_{i}}-a_{i}^{k_{i}}=\left(X^{g_{i}}-a_{i}\right) \sum_{j=0}^{k_{i}-1} X^{j g_{i}}\left(a_{i}\right)^{k_{i}-1-j}
$$

from which the lemma immediately follows.

Lemma 3.2. Let R be a commutative ring and

$$
G_{0}=\left\{e_{1}\right\} \cup\left\{k e_{1}+\prod_{p \in \mathbb{P}, p \mid m} p^{u_{p}} e_{2} \mid k \in[0, m-1], u_{p} \in \mathbb{N}_{0}\right\}
$$

Let $M \in \mathbb{N}$ be such that, for every sequence $S=g_{1} \cdot \ldots \cdot g_{M+1} \in \mathcal{F}\left(G_{0}\right)$, there exist $a_{1}, \ldots, a_{M+1} \in R \backslash\{0\}$ such that

$$
f=\left(X^{g_{1}}-a_{1}\right) \cdot \ldots \cdot\left(X^{g_{M+1}}-a_{M+1}\right)=0 \in R[G] .
$$

Then $\mathrm{d}(G, R) \leq M$.
Proof. By Lemma 3.1 and the definition of $\mathrm{d}(G, R)$, it is sufficient to show that every element $g \in G$ is a multiple of an element in G_{0}.

Let $g=k e_{1}+l e_{2}$ with $k \in[0, m-1]$ and $l \in[0, m n-1]$. If $l=0, g$ is obviously a multiple of e_{1}. Consider the case $l \neq 0$. Then $l=\prod_{p \in \mathbb{P}, p \mid m} p^{v_{p}(l)} \cdot q$ with $q \in[1, m n-1]$ and $\operatorname{gcd}(q, m)=1$. Therefore there exists an $a \in[1, m-1]$ with $q a \equiv 1 \bmod m$. From $\operatorname{ord}\left(e_{1}\right)=m$, it follows that $g=q\left(a k e_{1}+\prod_{p \in \mathbb{P}, p \mid m} p^{\vee_{p}(l)} e_{2}\right)$. Choosing $k^{\prime} \in[0, m-1]$ such that $k^{\prime} \equiv a k \bmod m$, we obtain $g=q\left(k^{\prime} e_{1}+\prod_{p \in \mathbb{P}, p \mid m} p^{\vee_{p}(l)} e_{2}\right)$, which is a multiple of an element in G_{0}.

Lemma 3.3. Let $g \in G$ and $\chi, \chi^{\prime} \in \widehat{G}$. Then $\chi^{\prime}(g)=\chi(g)$ if and only if $\chi^{\prime} \in \chi\langle g\rangle^{\perp}$. Also

1. $\left\langle k e_{1}+e_{2}\right\rangle^{\perp}=\left\langle\psi \varphi^{-n k}\right\rangle$ for $k \in[0, m-1]$;
2. $\left\langle\varphi^{n}\right\rangle \subset\left\langle k e_{1}+m l e_{2}\right\rangle^{\perp}$ for $k \in[0, m-1]$ and $l \in[0, n-1]$.

Proof. Clearly $\chi^{\prime}(g)=\chi(g)$ if and only if $\chi^{-1} \chi^{\prime}(g)=1$, i.e., $\chi^{\prime} \in \chi\langle g\rangle^{\perp}$.

1. From $\psi^{-1}\left(k e_{1}+e_{2}\right)=\zeta^{-n k}=\varphi^{-n k}\left(k e_{1}+e_{2}\right)$, it follows that $\left\langle\psi \varphi^{-n k}\right\rangle \subset\left\langle k e_{1}+e_{2}\right\rangle^{\perp}$. Then $\operatorname{ord}\left(k e_{1}+e_{2}\right)=m n$ and $\left\langle k e_{1}+e_{2}\right\rangle^{\perp} \cong G /\left\langle\widehat{k e_{1}+} e_{2}\right\rangle$ imply $\left|\left\langle k e_{1}+e_{2}\right\rangle^{\perp}\right|=m$, from which $\left\langle k e_{1}+e_{2}\right\rangle^{\perp}=$ $\left\langle\psi \varphi^{-n k}\right\rangle$ follows.
2. Observe that $\varphi^{n}\left(k e_{1}+m l e_{2}\right)=\zeta^{n m l}=\left(\zeta^{n m}\right)^{l}=1$ implies $\left\langle\varphi^{n}\right\rangle \subset\left\langle k e_{1}+m l e_{2}\right\rangle^{\perp}$.

Lemma 3.4. Let $H \subset \widehat{G}$ and $S=g_{1} \cdot \ldots \cdot g_{l} \in \mathcal{F}(G)$. Then the following statements are equivalent:
(a) There exist $a_{1}, \ldots, a_{l} \in K^{\times}$such that $\chi\left(\prod_{i=1}^{l}\left(X^{g_{i}}-a_{i}\right)\right)=0$ for all $\chi \in H$.
(b) There exist $s \in[0, l]$ and $\chi_{1}, \ldots, \chi_{s} \in H$ such that $H \subset \bigcup_{i=1}^{s} \chi_{i}\left\langle g_{i}\right\rangle^{\perp}$.
(c) $H=\emptyset$ or there exist $\chi_{1}, \ldots, \chi_{l} \in H$ such that $H \subset \bigcup_{i=1}^{l} \chi_{i}\left\langle g_{i}\right\rangle^{\perp}$.

Proof. For $H=\emptyset$ all statements are trivially true. Let $H \neq \emptyset$.
(a) $\Rightarrow(\mathrm{b})$ The extension of $\chi \in \widehat{G}$ to $K[G]$ is a K-algebra homomorphism, and thus

$$
\chi\left(\prod_{i=1}^{l}\left(X^{g_{i}}-a_{i}\right)\right)=0
$$

if and only if there is an $i \in[1, l]$ with $\chi\left(X^{g_{i}}-a_{i}\right)=0$, i.e., $\chi\left(g_{i}\right)=a_{i}$. Let

$$
s=\mid\left\{i \in[1, l] \mid \text { there exists a } \chi \in H \text { such that } \chi\left(g_{i}\right)=a_{i}\right\} \mid \in[0, l]
$$

Without restriction let g_{1}, \ldots, g_{s} and a_{1}, \ldots, a_{s} be such that there exist $\chi_{i} \in H$ with $\chi_{i}\left(g_{i}\right)=a_{i}$ for $i \in[1, s]$. Let $\chi \in H$. Then, by assumption, $\chi\left(g_{i}\right)=a_{i}$ for some $i \in[1, s]$. Therefore $\chi_{i}^{-1} \chi\left(g_{i}\right)=1$, i.e. $\chi \in \chi_{i}\left\langle g_{i}\right\rangle^{\perp}$.
(b) \Rightarrow (a) Let $a_{i}=\chi_{i}\left(g_{i}\right)$ for $i \in[1, s]$ and let $a_{s+1}=\ldots=a_{l}=1$. Let $\chi \in H$. Then, by assumption, there exists an $i \in[1, s]$ such that $\chi \in \chi_{i}\left\langle g_{i}\right\rangle^{\perp}$, i.e., $\chi\left(g_{i}\right)=\chi_{i}\left(g_{i}\right)=a_{i}$. Hence $\chi\left(X^{g_{i}}-a_{i}\right)=0$.
(b) \Leftrightarrow (c) Obvious.

Note that, in particular, $\mathrm{d}(G, K)$ is the supremum of all $l \in \mathbb{N}_{0}$ such that there exists a sequence $S=g_{1} \cdot \ldots \cdot g_{l} \in \mathcal{F}(G)$ with

$$
\bigcup_{i=1}^{l} \chi_{i}\left\langle g_{i}\right\rangle^{\perp} \subsetneq \widehat{G}
$$

for any choice of $\chi_{1}, \ldots, \chi_{l} \in \widehat{G}$. Or, equivalently, $\mathrm{d}(G, K)+1$ is the minimum of all $l \in \mathbb{N}_{0}$ such that, for any sequence $S=g_{1} \cdot \ldots \cdot g_{l} \in \mathcal{F}(G)$, there exist $\chi_{1}, \ldots, \chi_{l} \in \widehat{G}$ such that \widehat{G} can be covered as above:

$$
\widehat{G}=\bigcup_{i=1}^{l} \chi_{i}\left\langle g_{i}\right\rangle^{\perp}
$$

Consider $m=p \in \mathbb{P}$. Our strategy for finding an upper bound on $\mathrm{d}(G, K)$ will be to subdivide \widehat{G} into cosets modulo $\left\langle\psi, \varphi^{n}\right\rangle$ and cover each of these cosets individually. Lemma 3.2 allows us to restrict ourselves to certain special elements $g \in G$ in doing so, and from Lemma 3.3, we see that for these elements $\langle g\rangle^{\perp}$ contain (or are) 1-dimensional subspaces, i.e., lines of the 2-dimensional \mathbb{F}_{p}-vector space $\left\langle\psi, \varphi^{n}\right\rangle$. Then, for $\chi \in\left\langle\psi, \varphi^{n}\right\rangle, \chi\langle g\rangle^{\perp}$ is an affine line in $\left\langle\psi, \varphi^{n}\right\rangle$ containing the "point" χ, and our task essentially boils down to covering n copies of $\left\langle\psi, \varphi^{n}\right\rangle$ by such lines (where the slopes are fixed by S).

Before we do so, we study some simple configurations in Lemma 3.5 and Lemma 3.6. The main part of the proof for the cases $m \in\{2,3\}$ then follows in Lemma 3.7. It is based on the proof by Gao and Li of the case $m=2$, but is stated in terms of group characters instead of working with the group algebra directly.

Lemma 3.5. Let $s \in[0, m]$ and let $S=g_{1} \cdot \ldots \cdot g_{s+(m-s) m} \in \mathcal{F}(G)$ such that either $g_{1}=\ldots=g_{s}=k e_{1}+e_{2}$ with $k \in[0, m-1]$ or $g_{1}, \ldots, g_{s} \in\left\{k e_{1}+m e_{2} \mid k \in[0, m-1], l \in \mathbb{N}_{0}\right\}$. Then there exist $\chi_{1}, \ldots, \chi_{s+(m-s) m}$ such that $\left\langle\psi, \varphi^{n}\right\rangle \subset \bigcup_{i=1}^{s+(m-s) m} \chi_{i}\left\langle g_{i}\right\rangle^{\perp}$.
Proof. Let $L=\left\langle\psi \varphi^{-n k}\right\rangle$ in the case $g_{1}=\ldots=g_{s}=k e_{1}+e_{2}$, and let $L=\left\langle\varphi^{n}\right\rangle$ otherwise. Since L is a subgroup of $\left\langle\psi, \varphi^{n}\right\rangle$ and has cardinality $|L|=m$, there exist $\tau_{1}, \ldots, \tau_{m} \in\left\langle\psi, \varphi^{n}\right\rangle$ such that $\left\langle\psi, \varphi^{n}\right\rangle=\biguplus_{i=1}^{m} \tau_{i} L$. By Lemma 3.3, $L \subset\left\langle g_{i}\right\rangle^{\perp}$ for $i \in[1, s]$. Then

$$
\left\langle\psi, \varphi^{n}\right\rangle \subset \bigcup_{i=1}^{s} \tau_{i}\left\langle g_{i}\right\rangle^{\perp} \cup \biguplus_{i=s+1}^{m} \tau_{i} L
$$

For $j \in[s+1, s+(m-s) m]$, let $\chi_{j}^{\prime} \in\left\langle g_{j}\right\rangle^{\perp}$, and let $L=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$. Then, for $i \in[s+1, m]$,

$$
\tau_{i} L=\left\{\tau_{i} \lambda_{j} \mid j \in[1, m]\right\} \subset \bigcup_{j=1}^{m} \tau_{i} \lambda_{j} \chi_{s+(i-(s+1)) m+j}^{\prime-1}\left\langle g_{s+(i-(s+1)) m+j}\right\rangle^{\perp}
$$

Lemma 3.6. Let $m=p \in \mathbb{P}, g \in\left\{k e_{1}+p l e_{2} \mid k \in[0, p-1], l \in \mathbb{N}_{0}\right\}$ and $S=\prod_{i=0}^{p-1}\left(i e_{1}+e_{2}\right) g$. Then $\left\langle\psi, \varphi^{n}\right\rangle \subset \bigcup_{i=0}^{p-1}\left\langle i e_{1}+e_{2}\right\rangle^{\perp} \cup\langle g\rangle^{\perp}$.

Proof. By Lemma 3.3,

$$
\bigcup_{i=0}^{p-1}\left\langle\psi \varphi^{-n i}\right\rangle \cup\left\langle\varphi^{n}\right\rangle \subset \bigcup_{i=0}^{p-1}\left\langle i e_{1}+e_{2}\right\rangle^{\perp} \cup\langle g\rangle^{\perp}
$$

Let $\psi^{k} \varphi^{n l} \in\left\langle\psi, \varphi^{n}\right\rangle$ with $k, l \in[0, p-1]$. In the case $k=0$, clearly $\varphi^{n l} \in\left\langle\varphi^{n}\right\rangle$. Otherwise, there exists an $i \in[0, p-1]$ such that $-i k \equiv l \bmod p$. Hence $\psi^{k} \varphi^{n l}=\left(\psi \varphi^{-n i}\right)^{k} \in\left\langle\psi \varphi^{-n i}\right\rangle$.

Lemma 3.7. Let $m=p \in \mathbb{P}, G_{1}=\left\{e_{1}\right\} \cup\left\{k e_{1}+p^{u} e_{2} \mid k \in[0, p-1], u \in \mathbb{N}\right\}$, and

$$
G_{0}=\left\{e_{1}\right\} \cup\left\{k e_{1}+p^{u} e_{2} \mid k \in[0, p-1], u \in \mathbb{N}_{0}\right\}=\left\{k e_{1}+e_{2} \mid k \in[0, p-1]\right\} \uplus G_{1} .
$$

If, for all sequences $T=h_{1} \cdot \ldots \cdot h_{r p-1} \in \mathcal{F}\left(G_{0}\right)$ with $r \in[2, \min \{p-1, n+1\}]$ and $\vee_{g}(T)<p$ for all $g \in$ G_{0} as well as $\sum_{g \in G_{1}} \vee_{g}(T)<p$, there exist $\chi_{1}, \ldots, \chi_{r p-1} \in \widehat{G}$ such that $\bigcup_{i=0}^{r-2} \varphi^{i}\left\langle\psi, \varphi^{n}\right\rangle \subset \bigcup_{i=1}^{r p-1} \chi_{i}\left\langle h_{i}\right\rangle^{\perp}$, then $\mathrm{d}(G, K)=\mathrm{d}^{*}(G)$.

Proof. Since $\mathrm{d}^{*}(G) \leq \mathrm{d}(G) \leq \mathrm{d}(G, K)$ always holds, it is sufficient to show that $\mathrm{d}(G, K) \leq \mathrm{d}^{*}(G)=$ $(p n-1)+(p-1)=(n+1) p-2$. By Lemma 3.2, it is sufficient to show that, for any sequence $S=g_{1} \cdot \ldots \cdot g_{(n+1) p-1} \in \mathcal{F}\left(G_{0}\right)$, there exist $a_{1}, \ldots, a_{(n+1) p-1} \in K^{\times}$such that

$$
f=\prod_{i=1}^{(n+1) p-1}\left(X^{g_{i}}-a_{i}\right)=0 \in K[G]
$$

To see this, we use Lemma 3.4 and show that there exist $\chi_{1}, \ldots, \chi_{(n+1) p-1}$ such that

$$
\widehat{G}=\biguplus_{i=0}^{n-1} \varphi^{i}\left\langle\psi, \varphi^{n}\right\rangle \subset \bigcup_{i=1}^{(n+1) p-1} \chi_{i}\left\langle g_{i}\right\rangle^{\perp}
$$

We group the elements of S into as many p-tuples of the forms $\left(e_{2}, \ldots, e_{2}\right),\left(e_{1}+e_{2}, \ldots, e_{1}+e_{2}\right)$, $\ldots,\left((p-1) e_{1}+e_{2}, \ldots(p-1) e_{1}+e_{2}\right)$ and $\left(g_{1}^{\prime}, \ldots, g_{p}^{\prime}\right) \in G_{1}^{p}$ as possible to obtain $l \in[0, n]$ such tuples. Without restriction, let these p-tuples be $\left(g_{1}, \ldots, g_{p}\right), \ldots,\left(g_{(l-1) p+1}, \ldots, g_{l p}\right)$.

For each $i \in[1, l]$, the tuple $\left(g_{(i-1) p+1}, \ldots, g_{i p}\right)$ fulfills the conditions of Lemma 3.5 with $s=p$. Therefore, there exist $\chi_{(i-1) p+1}, \ldots, \chi_{i p}$ such that

$$
\varphi^{n-i}\left\langle\psi, \varphi^{n}\right\rangle \subset \bigcup_{j=(i-1) p+1}^{i p} \chi_{j}\left\langle g_{j}\right\rangle^{\perp}
$$

It remains to be shown that $\chi_{l p+1}, \ldots, \chi_{(n+1) p-1}$ can be chosen such that

$$
\bigcup_{i=0}^{n-l-1} \varphi^{i}\left\langle\psi, \varphi^{n}\right\rangle \subset \bigcup_{j=l p+1}^{(n+1) p-1} \chi_{j}\left\langle g_{j}\right\rangle^{\perp}
$$

In the case $l \geq n$, this is trivially so, and therefore it is sufficient to consider $l \leq n-1$.
By $T=g_{l p+1} \cdot \ldots \cdot g_{(n+1) p-1}$ we denote the subsequence of S consisting of the remaining elements. We have $|T|=|S|-l p=(n+1-l) p-1$. In the process of creating p-tuples, we partitioned the elements of G_{0} into $p+1$ different types. If there were at least p elements of one type, we could create another tuple, in contradiction to the maximal choice of l. Thus we must have $\mathrm{v}_{g}(T)<p$ for all $g \in G_{0}, \sum_{g \in G_{1}} \mathrm{v}_{g}(T)<p$, and $|T| \leq(p+1)(p-1)=p^{2}-1$, which implies $n+1-l \leq p$.

Altogether, we have $n+1-l \in[2, p]$. In the case $n+1-l \leq p-1$, we set $r=n+1-l \in$ $[2, \min \{p-1, n+1\}]$. Then, by assumption, $\chi_{l p+1}, \ldots, \chi_{(n+1) p-1}$ can be chosen such that

$$
\bigcup_{i=0}^{r-2} \varphi^{i}\left\langle\psi, \varphi^{n}\right\rangle \subset \bigcup_{j=l p+1}^{(n+1) p-1} \chi_{j}\left\langle g_{j}\right\rangle^{\perp}
$$

Since $r-2=n-l-1$, this already means $\widehat{G} \subset \bigcup_{i=1}^{(n+1) p-1} \chi_{i}\left\langle g_{i}\right\rangle^{\perp}$.
In the case $n+1-l=p$, we have $|T|=p^{2}-1=(p+1)(p-1)$. This can only happen if each of the $p+1$ different types of elements occurs exactly $p-1$ times. Therefore

$$
T=\prod_{j=0}^{p-1}\left(j e_{1}+e_{2}\right)^{p-1} \cdot \prod_{i=0}^{p-2} h_{j}=\prod_{i=0}^{p-2}\left(\prod_{j=0}^{p-1}\left(j e_{1}+e_{2}\right) \cdot h_{i}\right)
$$

with $h_{0}, \ldots, h_{p-2} \in G_{1}$. Without restriction, for $i \in[0, p-2]$, let $g_{l p+i(p+1)+1} \cdot \ldots \cdot g_{l p+i(p+1)+(p+1)}=$ $\prod_{j=0}^{p-1}\left(j e_{1}+e_{2}\right) \cdot h_{i}$. For every $i \in[0, p-2]$, we set $\chi_{l p+i(p+1)+1}=\ldots=\chi_{l p+i(p+1)+(p+1)}=\varphi^{i}$. Then, from Lemma 3.6, it follows that $\varphi^{i}\left\langle\psi, \varphi^{n}\right\rangle \subset \bigcup_{j=i(p+1)+1}^{i(p+1)+(p+1)} \chi_{l p+j}\left\langle g_{l p+j}\right\rangle^{\perp}$. Due to $n-l-1=p-2$, this again implies $\widehat{G} \subset \bigcup_{i=1}^{(n+1) p-1} \chi_{i}\left\langle g_{i}\right\rangle^{\perp}$.

Proof of Theorem 1.1.1. For $p=2$, i.e. $G=\mathrm{C}_{2} \oplus \mathrm{C}_{2 n}$, this follows trivially from Lemma 3.7, since there are no admissible sequences.

Consider $p=3$, i.e., $G=\mathrm{C}_{3} \oplus \mathrm{C}_{3 n}$. Let $G_{1}=\left\{e_{1}\right\} \cup\left\{k e_{1}+3^{u} e_{2} \mid k \in[0,2], u \in \mathbb{N}\right\}$ and $G_{0}=$ $\left\{e_{2}, e_{1}+e_{2}, 2 e_{1}+e_{2}\right\} \uplus G_{1}$. Then, by Lemma 3.7, it is sufficient to show that, for $T=h_{1} \cdot \ldots \cdot h_{5} \in \mathcal{F}\left(G_{0}\right)$, we can choose $\chi_{1}, \ldots, \chi_{5} \in \widehat{G}$ such that $\left\langle\psi, \varphi^{n}\right\rangle \subset \chi_{1}\left\langle h_{1}\right\rangle^{\perp} \cup \ldots \cup \chi_{5}\left\langle h_{5}\right\rangle^{\perp}$. We divide the elements into four types: $e_{2}, e_{1}+e_{2}, 2 e_{1}+e_{2}$ and elements from G_{1}. Since $|T|=5$, one of these types must occur at least twice. Without restriction, let h_{1} and h_{2} be of the same type. Thus we have either $h_{1}=h_{2}=k e_{1}+e_{2}$ for some $k \in[0,2]$ or $h_{1}, h_{2} \in G_{1}$. Then T fulfills the conditions of Lemma 3.5 with $s=2$, and it follows that $\chi_{1}, \ldots, \chi_{5}$ can be chosen such that $\left\langle\psi, \varphi^{n}\right\rangle \subset \bigcup_{i=1}^{5} \chi_{i}\left\langle h_{i}\right\rangle^{\perp}$.

The following Lemma 3.8 recapitulates a few simple facts, which are well known in the context of affine lines, and will be used extensively in the construction of a counterexample in the case $p \geq 5$ and $n \geq 2$.

Lemma 3.8. Let $m=p \in \mathbb{P}, g_{1}=k_{1} e_{1}+e_{2}, g_{2}=k_{2} e_{1}+e_{2}$ with $k_{1}, k_{2} \in[0, p-1], \chi \in \widehat{G}$ and $\chi_{1}, \chi_{2} \in \chi\left\langle\psi, \varphi^{n}\right\rangle$.

1. $\chi^{-1} \chi_{i}\left\langle g_{i}\right\rangle^{\perp}=\varphi^{n s_{i}}\left\langle g_{i}\right\rangle^{\perp}$ with $s_{i} \in[0, p-1]$ for $i \in\{1,2\}$.
2. $\chi^{-1} \chi_{i}\left\langle g_{i}\right\rangle^{\perp}=\left\{\psi^{u} \varphi^{n v} \mid u, v \in[0, p-1]\right.$ with $\left.k_{i} u+v \equiv s_{i} \bmod p\right\}$ for $i \in\{1,2\}$.
3. (a) $\left|\chi_{1}\left\langle g_{1}\right\rangle^{\perp} \cap \chi_{2}\left\langle g_{2}\right\rangle^{\perp}\right|=1$ if and only if $g_{1} \neq g_{2}$.
(b) $\left|\chi_{1}\left\langle g_{1}\right\rangle^{\perp} \cap \chi_{2}\left\langle g_{2}\right\rangle^{\perp}\right|=0$ if and only if $g_{1}=g_{2}$ and $s_{1} \neq s_{2}$.
(c) $\left|\chi_{1}\left\langle g_{1}\right\rangle^{\perp} \cap \chi_{2}\left\langle g_{2}\right\rangle^{\perp}\right|=p$ if and only if $g_{1}=g_{2}$ and $s_{1}=s_{2}$.

Proof. 1. Let $i \in\{1,2\}$ and $\chi^{-1} \chi_{i}=\psi^{u_{i}} \varphi^{n v_{i}}$ with $u_{i}, v_{i} \in[0, p-1]$. By Lemma 3.3.1, $\left\langle g_{i}\right\rangle^{\perp}=\left\langle\psi \varphi^{-n k_{i}}\right\rangle$. Therefore $\varphi^{-n\left(k_{i} u_{i}+v_{i}\right)} \chi^{-1} \chi_{i}=\psi^{u_{i}} \varphi^{-n k_{i} u_{i}} \in\left\langle g_{i}\right\rangle^{\perp}$, and hence $\chi^{-1} \chi_{i}\left\langle g_{i}\right\rangle^{\perp}=\varphi^{n s_{i}}\left\langle g_{i}\right\rangle^{\perp}$ with $s_{i} \in[0, p-1]$ chosen such that $s_{i} \equiv k_{i} u_{i}+v_{i} \bmod p$.
2. In view of Lemma 3.3.1, we have, for $u, v \in[0, p-1], \quad \psi^{u} \varphi^{n v} \in \chi^{-1} \chi_{i}\left\langle g_{i}\right\rangle^{\perp}=\varphi^{n s_{i}}\left\langle\psi \varphi^{-n k_{i}}\right\rangle$ if and only if $\psi^{u} \varphi^{n v}=\psi^{w} \varphi^{n\left(s_{i}-k_{i} w\right)}$ for some $w \in[0, p-1]$. This is the case if and only if $u \equiv w \bmod p$ and $v \equiv s_{i}-k_{i} w \bmod p$, i.e., if and only if $u \equiv w \bmod p$ and $k_{i} u+v \equiv s_{i} \bmod p$ (recall by Lemma 3.3.1 that $\left.\left\langle g_{i}\right\rangle^{\perp} \subset\left\langle\psi, \varphi^{n}\right\rangle\right)$.
3. By 2, we have $\chi^{-1} \chi_{1}\left\langle g_{1}\right\rangle^{\perp} \cap \chi^{-1} \chi_{2}\left\langle g_{2}\right\rangle^{\perp}=\left\{\psi^{u} \varphi^{n v} \mid u, v \in[0, p-1]\right.$ with $k_{1} u+v \equiv s_{1}$ $\bmod p$ and $\left.k_{2} u+v \equiv s_{2} \bmod p\right\}$. Since

$$
\left|\chi^{-1} \chi_{1}\left\langle g_{1}\right\rangle^{\perp} \cap \chi^{-1} \chi_{2}\left\langle g_{2}\right\rangle^{\perp}\right|=\left|\chi_{1}\left\langle g_{1}\right\rangle^{\perp} \cap \chi_{2}\left\langle g_{2}\right\rangle^{\perp}\right|
$$

it is sufficient to consider the number of solutions of the linear system

$$
k_{1} u+v \equiv s_{1} \quad \bmod p \quad \text { and } \quad k_{2} u+v \equiv s_{2} \quad \bmod p
$$

for $u, v \in[0, p-1]$ over \mathbb{F}_{p}. In the case $g_{1} \neq g_{2}$, i.e., $k_{1} \neq k_{2}$, it possesses a unique solution. In the case $g_{1}=g_{2}$, it possesses no solution for $s_{1} \neq s_{2}$. For $s_{1}=s_{2}$, the two equations coincide, and we obtain p solutions.

In the construction of the counterexamples, we use the same characterization of $\mathrm{d}(G, K)$, derived from Lemma 3.4, as in the proof of Theorem 1.1.1- except now we show that it is not possible to cover \widehat{G} with such subsets. To do so, we first consider a special type of sequence in Lemma 3.9, which will turn out to be the only one which cannot be discarded with simpler combinatorial arguments, as will be given in the proof of Theorem 1.1.2 that follows the lemma.

Lemma 3.9. Let $m=p \in \mathbb{P}, p \geq 5$ and $k_{1}, k_{2}, k_{3} \in[0, p-1]$ be distinct. Let $l \in[2, p-1]$,

$$
T=\left(k_{1} e_{1}+e_{2}\right)^{l}\left(k_{2} e_{1}+e_{2}\right)^{l}\left(k_{3} e_{1}+e_{2}\right)^{l} \in \mathcal{F}(G)
$$

and $\chi \in \widehat{G}$. For $i \in[1,3]$ and $j \in[1, l]$, let $\chi_{i, j} \in \widehat{G}$. Then

$$
\left|\left(\bigcup_{i=1}^{3} \bigcup_{j=1}^{l} \chi_{i, j}\left\langle k_{i} e_{1}+e_{2}\right\rangle^{\perp}\right) \cap \chi\left\langle\psi, \varphi^{n}\right\rangle\right|<l(3 p-2 l)
$$

Proof. We set $g_{i}=k_{i} e_{1}+e_{2}$ for $i \in[1,3]$. Let $i \in[1,3]$ and $j \in[1, l]$. We can assume $\chi_{i, j} \in \chi\left\langle\psi, \varphi^{n}\right\rangle$ since otherwise $\chi_{i, j}\left\langle g_{i}\right\rangle^{\perp} \cap \chi\left\langle\psi, \varphi^{n}\right\rangle=\emptyset$ (due to $\left\langle g_{i}\right\rangle^{\perp}=\left\langle\psi \varphi^{-n k_{i}}\right\rangle \subset\left\langle\psi, \varphi^{n}\right\rangle$). Using Lemma 3.8.1, we can furthermore assume $\chi^{-1} \chi_{i, j}=\varphi^{n s_{i, j}}$ with $s_{i, j} \in[0, p-1]$. And we can then also assume, without restriction, $s_{i, j} \neq s_{i, j^{\prime}}$ for $j^{\prime} \in[1, l] \backslash\{j\}$, since otherwise $\chi_{i, j}\left\langle g_{i}\right\rangle^{\perp}=\chi_{i, j^{\prime}}\left\langle g_{i}\right\rangle^{\perp}$.

For $i \in[1,3]$, let $E_{i}=\bigcup_{j=1}^{l} \chi_{i, j}\left\langle g_{i}\right\rangle^{\perp}$. Then

$$
\left(\bigcup_{i=1}^{3} \bigcup_{j=1}^{l} \chi_{i, j}\left\langle g_{i}\right\rangle^{\perp}\right) \cap \chi\left\langle\psi, \varphi^{n}\right\rangle=E_{1} \cup E_{2} \cup E_{3}
$$

and

$$
\left|E_{1} \cup E_{2} \cup E_{3}\right|=\sum_{i=1}^{3}\left|E_{i}\right|-\sum_{1 \leq i<i^{\prime} \leq 3}\left|E_{i} \cap E_{i^{\prime}}\right|+\left|E_{1} \cap E_{2} \cap E_{3}\right|
$$

For $i, i^{\prime} \in[1,3]$ distinct, we show $\left|E_{i}\right|=l p,\left|E_{i} \cap E_{i^{\prime}}\right|=l^{2}$ and $\left|E_{1} \cap E_{2} \cap E_{3}\right|<l^{2}$. Then $\left|E_{1} \cup E_{2} \cup E_{3}\right|<$ $3 l p-3 l^{2}+l^{2}=l(3 p-2 l)$.

Let $i \in[1,3]$. By Lemma 3.8.3b, $\chi_{i, j}\left\langle g_{i}\right\rangle^{\perp} \cap \chi_{i, j^{\prime}}\left\langle g_{i}\right\rangle^{\perp}=\emptyset$ for $j, j^{\prime} \in[1, l]$ with $j \neq j^{\prime}$, and $\left|\left\langle g_{i}\right\rangle^{\perp}\right|=$ $\left|\left\langle\psi \varphi^{-n k_{i}}\right\rangle\right|=p$ (by Lemma 3.3.1). Therefore $\left|E_{i}\right|=l p$.

Let $i, i^{\prime} \in[1,3]$ be distinct. For $j, j^{\prime} \in[1, l]$ distinct, we have $\chi_{i, j}\left\langle g_{i}\right\rangle^{\perp} \cap \chi_{i, j^{\prime}}\left\langle g_{i}\right\rangle^{\perp}=\emptyset$ and $\chi_{i^{\prime}, j}\left\langle g_{i^{\prime}}\right\rangle^{\perp} \cap$ $\chi_{i^{\prime}, j^{\prime}}\left\langle g_{i^{\prime}}\right\rangle^{\perp}=\emptyset$ (by Lemma 3.8.3b). This implies that, for

$$
E_{i} \cap E_{i^{\prime}}=\left(\bigcup_{j=1}^{l} \chi_{i, j}\left\langle g_{i}\right\rangle^{\perp}\right) \cap\left(\bigcup_{j^{\prime}=1}^{l} \chi_{i^{\prime}, j^{\prime}}\left\langle g_{i^{\prime}}\right\rangle^{\perp}\right)=\biguplus_{j=1}^{l} \biguplus_{j^{\prime}=1}^{l}\left(\chi_{i, j}\left\langle g_{i}\right\rangle^{\perp} \cap \chi_{i^{\prime}, j^{\prime}}\left\langle g_{i^{\prime}}\right\rangle^{\perp}\right)
$$

the union is disjoint. By Lemma 3.8.3a $\left|\chi_{i, j}\left\langle g_{i}\right\rangle^{\perp} \cap \chi_{i^{\prime}, j^{\prime}}\left\langle g_{i^{\prime}}\right\rangle^{\perp}\right|=1$ for $j, j^{\prime} \in[1, l]$, and therefore $\left|E_{i} \cap E_{i^{\prime}}\right|=l^{2}$.

Assume $\left|E_{1} \cap E_{2} \cap E_{2}\right| \geq l^{2}$. Then, since $\left|E_{1} \cap E_{2}\right|=l^{2},\left|E_{1} \cap E_{2} \cap E_{3}\right|=l^{2}$. For $a \in \mathbb{Z}$, let $\bar{a}=a+p \mathbb{Z} \in \mathbb{F}_{p}$. Let $u, v \in[0, p-1]$. By Lemma 3.8.2, $\chi \psi^{u} \varphi^{n v} \in E_{1} \cap E_{2} \cap E_{3}$ if and only if there are $b_{i} \in\left\{s_{i, 1}, \ldots, s_{i, l}\right\}$, for $i \in[1,3]$, such that

$$
\begin{aligned}
& \overline{k_{1}} \bar{u}+\bar{v}=\overline{b_{1}} \\
& \overline{k_{2}} \bar{u}+\bar{v}=\overline{b_{2}} \\
& \overline{k_{3}} \bar{u}+\bar{v}=\overline{b_{3}} .
\end{aligned}
$$

Since $\overline{k_{1}}, \overline{k_{2}}$ and $\overline{k_{3}}$ are pairwise distinct, $\left(\overline{k_{1}}, \overline{1}\right),\left(\overline{k_{2}}, \overline{1}\right)$ and $\left(\overline{k_{3}}, \overline{1}\right)$ are pairwise \mathbb{F}_{p}-linearly independent. For $i \in[1,3]$, we define $\Phi_{i}: \chi\left\langle\psi, \varphi^{n}\right\rangle \rightarrow \mathbb{F}_{p}$ by $\Phi_{i}\left(\chi \psi^{u} \varphi^{n v}\right)=\overline{k_{i}} \bar{u}+\bar{v}$. Then the linear independence of $\left(\overline{k_{1}}, \overline{1}\right)$ and $\left(\overline{k_{2}}, \overline{1}\right)$ implies that $\Phi=\left(\Phi_{1}, \Phi_{2}\right): \chi\left\langle\psi, \varphi^{n}\right\rangle \rightarrow \mathbb{F}_{p}^{2}$ is bijective. We have $\Phi\left(E_{1} \cap E_{2} \cap E_{3}\right) \subset$ $\left\{\overline{s_{1,1}}, \ldots, \overline{s_{1, l}}\right\} \times\left\{\overline{s_{2,1}}, \ldots, \overline{s_{2, l}}\right\}$, and due to $l^{2}=\left|E_{1} \cap E_{2} \cap E_{3}\right| \leq\left|\left\{\overline{s_{1,1}}, \ldots, \overline{s_{1, l}}\right\} \times\left\{\overline{s_{2,1}}, \ldots, \overline{s_{2, l}}\right\}\right|=l^{2}$, equality holds. In particular, $\Phi_{1}\left(E_{1} \cap E_{2} \cap E_{3}\right)=\left\{\overline{s_{1,1}}, \ldots, \overline{s_{1, l}}\right\}$ and $\Phi_{2}\left(E_{1} \cap E_{2} \cap E_{3}\right)=\left\{\overline{s_{2,1}}, \ldots, \overline{s_{2, l}}\right\}$.

Because $\left(\overline{k_{1}}, \overline{1}\right),\left(\overline{k_{2}}, \overline{1}\right)$ and $\left(\overline{k_{3}}, \overline{1}\right)$ are pairwise \mathbb{F}_{p}-linearly independent, there exist $x, y \in \mathbb{F}_{p}^{\times}$such that $\left(\overline{k_{3}}, \overline{1}\right)=x\left(\overline{k_{1}}, \overline{1}\right)+y\left(\overline{k_{2}}, \overline{1}\right)$. Hence $\Phi_{3}=x \Phi_{1}+y \Phi_{2}$. Now $\left|x \Phi_{1}\left(E_{1} \cap E_{2} \cap E_{3}\right)\right|=\left|y \Phi_{2}\left(E_{1} \cap E_{2} \cap E_{3}\right)\right|=l$. Also, since $x, y \neq 0$, we have (similar to Φ) that $\left(x \Phi_{1}, y \Phi_{2}\right): \chi\left\langle\psi, \varphi^{n}\right\rangle \rightarrow \mathbb{F}_{p}^{2}$ is a bijective map. Thus, in view of $\left|x \Phi_{1}\left(E_{1} \cap E_{2} \cap E_{3}\right)\right|=\left|y \Phi_{2}\left(E_{1} \cap E_{2} \cap E_{3}\right)\right|=l$ and $\left|E_{1} \cap E_{2} \cap E_{3}\right|=l^{2}$, we see that $\left(x \Phi_{1}, y \Phi_{2}\right)\left(E_{1} \cap E_{2} \cap E_{3}\right)=x \Phi_{1}\left(E_{1} \cap E_{2} \cap E_{3}\right) \times y \Phi_{2}\left(E_{1} \cap E_{2} \cap E_{3}\right)$. Therefore

$$
\Phi_{3}\left(E_{1} \cap E_{2} \cap E_{3}\right)=x \Phi_{1}\left(E_{1} \cap E_{2} \cap E_{3}\right)+y \Phi_{2}\left(E_{1} \cap E_{2} \cap E_{3}\right)
$$

where the inclusion " \subset " is obvious and " \supset " follows since for any $\alpha, \beta \in E_{1} \cap E_{2} \cap E_{3}$ we can find $\theta \in E_{1} \cap E_{2} \cap E_{3}$ such that $\left(x \Phi_{1}(\alpha), y \Phi_{2}(\beta)\right)=\left(x \Phi_{1}(\theta), y \Phi_{2}(\theta)\right)$, and hence in particular $x \Phi_{1}(\alpha)+$ $y \Phi_{2}(\beta)=x \Phi_{1}(\theta)+y \Phi_{2}(\theta)=\Phi_{3}(\theta)$. From the Cauchy-Davenport Theorem (Lemma 2.1), it then follows that $\left|\Phi_{3}\left(E_{1} \cap E_{2} \cap E_{3}\right)\right| \geq \min \{2 l-1, p\}>l$, a contradiction, since $\Phi_{3}\left(E_{1} \cap E_{2} \cap E_{3}\right) \subset\left\{\overline{s_{3,1}}, \ldots, \overline{s_{3, l}}\right\}$.

Proof of Theorem 1.1.2. Consider $m=p \in \mathbb{P}_{\geq 5}$ and $n \geq 2$. Let $k_{1}, \ldots, k_{4} \in[0, p-1]$ be pairwise distinct and set $g_{i}=k_{i} e_{1}+e_{2} \in G$ for $i \in[1,4]$. Furthermore, set $m_{1}=(n-2) p+(p-1), m_{2}=m_{3}=p-1$ and $m_{4}=2$. We consider the sequence

$$
S=\prod_{i=1}^{4} g_{i}^{m_{i}} \in \mathcal{F}(G)
$$

and, for any choice of $\chi_{i, j} \in \widehat{G}$ for $i \in[1,4]$ and $j \in\left[1, m_{i}\right]$, show that

$$
\bigcup_{i=1}^{4} \bigcup_{j=1}^{m_{i}} \chi_{i, j}\left\langle g_{i}\right\rangle^{\perp} \subsetneq \widehat{G}
$$

Then, by Lemma 3.4 and the definition of $\mathrm{d}(G, K)$,

$$
\mathrm{d}(G, K) \geq|S|=p+p n-1>p+p n-2=\mathrm{d}^{*}(G)
$$

Let $\chi_{i, j} \in \widehat{G}$ for $i \in[1,4]$ and $j \in\left[1, m_{i}\right]$ be arbitrary. Assume, to the contrary, $\bigcup_{i=1}^{4} \bigcup_{j=1}^{m_{i}} \chi_{i, j}\left\langle g_{i}\right\rangle^{\perp}=$ \widehat{G}. For $i \in[1,4]$ and $j, j^{\prime} \in\left[1, m_{i}\right]$ distinct, we can without restriction assume $\chi_{i, j}\left\langle g_{i}\right\rangle^{\perp} \neq \chi_{i, j^{\prime}}\left\langle g_{i}\right\rangle^{\perp}$.

For any permutation $\sigma \in \mathfrak{S}_{n}$ (which will be fixed later),

$$
\widehat{G}=\biguplus_{\nu=1}^{n} \varphi^{\sigma(\nu)}\left\langle\psi, \varphi^{n}\right\rangle
$$

For given $i \in[1,4]$ and $j \in\left[1, m_{i}\right]$, we have by Lemma 3.3 that $\chi_{i, j}\left\langle g_{i}\right\rangle^{\perp} \subset \varphi^{\sigma(\nu)}\left\langle\psi, \varphi^{n}\right\rangle$ for a uniquely determined $\nu \in[1, n]$. For $i \in[1,4]$ and $\nu \in[1, n]$, we can therefore define

$$
B_{i}^{(\nu)}=\left\{\chi_{i, j} \mid j \in\left[1, m_{i}\right] \text { with } \chi_{i, j}\left\langle g_{i}\right\rangle^{\perp} \subset \varphi^{\sigma(\nu)}\left\langle\psi, \varphi^{n}\right\rangle\right\}
$$

We also define $n^{(\nu)}=\max \left\{\left|B_{i}^{(\nu)}\right| \mid i \in[1,4]\right\}$ as well as $l^{(\nu)}=\sum_{i=1}^{4}\left|B_{i}^{(\nu)}\right|$, for $\nu \in[1, n]$.
Let $\nu \in[1, n]$. By assumption,

$$
\varphi^{\sigma(\nu)}\left\langle\psi, \varphi^{n}\right\rangle=\bigcup_{i=1}^{4} \bigcup_{\chi \in B_{i}^{(\nu)}} \chi\left\langle g_{i}\right\rangle^{\perp}
$$

Thus, since $\left|\left\langle\psi, \varphi^{n}\right\rangle\right|=p^{2}$ and $\left|\left\langle g_{i}\right\rangle^{\perp}\right|=p$ for all $i \in[1,4]$, we have $l^{(\nu)} \geq p$. On the other hand, $n^{(\nu)} \leq p$ because otherwise there would exist $i \in[1,4]$ and $j, j^{\prime} \in\left[1, m_{i}\right]$ distinct such that $\chi_{i, j}\left\langle g_{i}\right\rangle^{\perp} \cap \chi_{i, j^{\prime}}\left\langle g_{i}\right\rangle^{\perp} \neq \emptyset$, but this would already imply $\chi_{i, j}\left\langle g_{i}\right\rangle^{\perp}=\chi_{i, j^{\prime}}\left\langle g_{i}\right\rangle^{\perp}$, contrary to assumption.

Fix $\sigma \in \mathfrak{S}_{n}$ so that there is a $k \in \mathbb{N}_{0}$ such that $n^{(1)}, \ldots, n^{(k)}<p$ and $n^{(k+1)}=\ldots=n^{(n)}=p$. Since $m_{i}<p$ for $i \geq 2$, we see (for $\nu \in[1, n]$) that $n^{(\nu)}=p$ is only possible if $\left|B_{1}^{(\nu)}\right|=p$. Due to $m_{1}=(n-2) p+(p-1)$, this is possible for at most $n-2$ different $\nu \in[1, n]$. Thus $k \geq 2$.

We can also estimate $\left|\bigcup_{i=1}^{4} \bigcup_{\chi \in B_{i}^{(\nu)}} \chi\left\langle g_{i}\right\rangle^{\perp}\right|$ in a different way: Assume for the purpose of showing (1) (the other cases are argued identically) that $n^{(\nu)}=\left|B_{1}^{(\nu)}\right| \geq\left|B_{2}^{(\nu)}\right| \geq\left|B_{3}^{(\nu)}\right| \geq\left|B_{4}^{(\nu)}\right|$. Each of the characters $\chi \in B_{1}^{(\nu)}$ contributes $\chi\left\langle g_{1}\right\rangle^{\perp}$, and therefore exactly p characters, to the union. Each of the characters $\chi \in B_{2}^{(\nu)}$ contributes at most $p-\left|B_{1}^{(\nu)}\right|$ characters, since $\left|\chi_{1}\left\langle g_{1}\right\rangle^{\perp} \cap \chi\left\langle g_{2}\right\rangle^{\perp}\right|=1$ for all $\chi_{1} \in B_{1}^{(\nu)}$. Similarly, each of the characters $\chi \in B_{3}^{(\nu)}$ contributes at most $p-\max \left\{\left|B_{1}^{(\nu)}\right|,\left|B_{2}^{(\nu)}\right|\right\}=p-\left|B_{1}^{(\nu)}\right|$ characters, since $\left|\chi_{1}\left\langle g_{1}\right\rangle^{\perp} \cap \chi\left\langle g_{3}\right\rangle^{\perp}\right|=1$ for all $\chi_{1} \in B_{1}^{(\nu)}$ and $\left|\chi_{2}\left\langle g_{2}\right\rangle^{\perp} \cap \chi\left\langle g_{3}\right\rangle^{\perp}\right|=1$ for all $\chi_{2} \in B_{2}^{(\nu)}$. Continuing this thought for $B_{4}^{(\nu)}$, we obtain

$$
\begin{aligned}
p^{2}=\left|\bigcup_{i=1}^{4} \bigcup_{\chi \in B_{i}^{(\nu)}} \chi\left\langle g_{i}\right\rangle^{\perp}\right| & \leq p\left|B_{1}^{(\nu)}\right|+\left(p-\left|B_{1}^{(\nu)}\right|\right)\left(\sum_{i=2}^{4}\left|B_{i}^{(\nu)}\right|\right) \\
& =p n^{(\nu)}+\left(p-n^{(\nu)}\right)\left(l^{(\nu)}-n^{(\nu)}\right)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left(n^{(\nu)}-\left(l^{(\nu)}-p\right)\right)\left(n^{(\nu)}-p\right)=p n^{(\nu)}+\left(p-n^{(\nu)}\right)\left(l^{(\nu)}-n^{(\nu)}\right)-p^{2} \geq 0 \tag{1}
\end{equation*}
$$

Thus either $n^{(\nu)} \geq p$ (and therefore already $n^{(\nu)}=p$) or $n^{(\nu)} \leq l^{(\nu)}-p$.
For $\nu \in[1, k]$, we obtain $n^{(\nu)} \leq l^{(\nu)}-p$. Due to $\left|B_{4}^{(\nu)}\right| \leq m_{4}=2$, we also have $l^{(\nu)}=\sum_{i=1}^{4}\left|B_{i}^{(\nu)}\right| \leq$ $3 n^{(\nu)}+2$. Then

$$
3 l^{(\nu)} \geq 3 n^{(\nu)}+3 p=3 n^{(\nu)}+2+3 p-2 \geq l^{(\nu)}+3 p-2
$$

and hence $l^{(\nu)} \geq \frac{3}{2} p-1$ for all $\nu \in[1, k]$. Because of $\sum_{i=1}^{n} l^{(\nu)}=|S|=p n+(p-1)$ and $l^{(\nu)} \geq n^{(\nu)}=p$ for all $\nu \in[k+1, n]$, we have $l^{(1)}+\ldots+l^{(k)} \leq p k+(p-1)$. For the remainder of the argument, we consider $\nu \in[1, k]$.

Then, by the above, $\sum_{i=1, i \neq \nu}^{k} l^{(\nu)} \geq(k-1)\left(\frac{3}{2} p-1\right)$, and hence

$$
\begin{equation*}
(k-1)\left(\frac{3}{2} p-1\right)+l^{(\nu)} \leq p k+(p-1) \tag{2}
\end{equation*}
$$

which implies

$$
\begin{aligned}
l^{(\nu)} & \leq p k+(p-1)-(k-1)\left(\frac{3}{2} p-1\right)=p k+p-1-\frac{3}{2} k p+k+\frac{3}{2} p-1 \\
& =\frac{3}{2} p+(p-2)+k-\frac{1}{2} p k=\frac{3}{2} p+(p-2)-\frac{k}{2}(p-2)
\end{aligned}
$$

Hence, since $k \geq 2$, it follows that $l^{(\nu)} \leq\left\lfloor\frac{3}{2} p\right\rfloor .{ }^{1}$ Together with $l^{(\nu)} \geq\left\lceil\frac{3}{2} p-1\right\rceil$, this implies $l^{(\nu)}=\frac{3}{2} p-\frac{1}{2}$.
Since $\left|B_{4}^{(1)}\right|+\ldots+\left|B_{4}^{(k)}\right| \leq m_{4}=2$ and $k \geq 2$, there exists a $\nu \in[1, k]$ with $\left|B_{4}^{(\nu)}\right| \leq 1$. Then

$$
\left|B_{1}^{(\nu)}\right|, \ldots,\left|B_{3}^{(\nu)}\right| \leq n^{(\nu)} \leq l^{(\nu)}-p=\frac{1}{2}(p-1)
$$

$\left|B_{4}^{(\nu)}\right| \leq 1$ and $\sum_{i=1}^{4}\left|B_{i}^{(\nu)}\right|=l^{(\nu)}=\frac{3}{2}(p-1)+1$. Therefore we must have

$$
\left|B_{1}^{(\nu)}\right|=\left|B_{2}^{(\nu)}\right|=\left|B_{3}^{(\nu)}\right|=n^{(\nu)}=\frac{1}{2}(p-1)
$$

and $\left|B_{4}^{(\nu)}\right|=1$.
With the help of Lemma 3.9, we show that this leads to a contradiction. Consider $T=g_{1}^{\frac{1}{2}(p-1)} g_{2}^{\frac{1}{2}(p-1)} g_{3}^{\frac{1}{2}(p-1)} \in$ $\mathcal{F}(G)$. Then, by Lemma 3.9 (with $l=\frac{1}{2}(p-1)$ and $\left.\chi=\varphi^{\sigma(\nu)}\right)$,

$$
\left|\bigcup_{i=1}^{3} \bigcup_{\chi^{\prime} \in B_{i}^{(\nu)}} \chi^{\prime}\left\langle g_{i}\right\rangle^{\perp}\right|<\frac{1}{2}(p-1)(2 p+1)
$$

Thus, with $B_{4}^{(\nu)}=\{\tau\}$,

$$
\begin{aligned}
p^{2} & =\left|\left(\bigcup_{i=1}^{3} \bigcup_{\chi^{\prime} \in B_{i}^{(\nu)}} \chi^{\prime}\left\langle g_{i}\right\rangle^{\perp}\right) \cup \tau\left\langle g_{4}\right\rangle^{\perp}\right| \leq\left|\bigcup_{i=1}^{3} \bigcup_{\chi^{\prime} \in B_{i}^{(\nu)}} \chi^{\prime}\left\langle g_{i}\right\rangle^{\perp}\right|+\left(p-n^{(\nu)}\right) \\
& <\frac{1}{2}(p-1)(2 p+1)+\frac{1}{2}(p+1)=p^{2}
\end{aligned}
$$

a contradiction.

4. Acknowledgements

I am indebted to Alfred Geroldinger for his constant feedback and help during the creation of this paper. I would also like to thank David Grynkiewicz and Günter Lettl for their comments on preliminary versions of this paper. In particular, G. Lettl suggested the use of the Cauchy-Davenport Theorem in Lemma 3.9, which significantly shortened the proof, compared to an earlier version.

[^1]
References

[1] G. Bhowmik and J.-C. Schlage-Puchta, Davenport's constant for groups of the form $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3 d}$, Additive Combinatorics (A. Granville, M.B. Nathanson, and J. Solymosi, eds.), CRM Proceedings and Lecture Notes, vol. 43, American Mathematical Society, 2007, pp. 307 - 326.
[2] C.W. Curtis and I. Reiner, Methods of Representation Theory, Volume I, John Wiley \& Sons, 1981.
[3] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), $337-369$.
[4] W. Gao, A. Geroldinger, and D.J. Grynkiewicz, Inverse zero-sum problems III, Acta Arith. 141 (2010), 103 - 152.
[5] W. Gao, A. Geroldinger, and F. Halter-Koch, Group algebras of finite abelian groups and their applications to combinatorial problems, Rocky Mt. J. Math. 39 (2009), 805 - 823.
[6] W. Gao and Y. Li, Remarks on group rings and the Davenport constant, Ars Comb., to appear.
[7] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory (A. Geroldinger and I. Ruzsa, eds.), Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1-86.
[8] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, 2006.
[9] A. Geroldinger, M. Liebmann, and A. Philipp, On the Davenport constant and on the structure of extremal zero-sum free sequences, Periodica Mathematica Hungarica, to appear.
[10] B. Girard, Inverse zero-sum problems in finite abelian p-groups, Colloq. Math., to appear.
[11] B. Girard, A new upper bound for the cross number of finite abelian groups, Isr. J. Math. 172 (2009), $253-278$.
[12] G. Lettl and W.A. Schmid, Minimal zero-sum sequences in $C_{n} \oplus C_{n}$, Eur. J. Comb. 28 (2007), 742 - 753.
[13] P. Rath, K. Srilakshmi, and R. Thangadurai, On Davenport's constant, Int. J. Number Theory 4 (2008), $107-115$.
[14] W.A. Schmid, Inverse zero-sum problems II, Acta Arith., 143 (2010), 333-343.
[15] Zhi-Wei Sun, Zero-sum problems for abelian p-groups and covers of the integers by residue classes, Isr. J. Math. 170 (2009), $235-252$.

Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, Heinrichstrasse 36, 8010 Graz, Austria

E-mail address: 06smertn@edu.uni-graz.at

[^0]: 2010 Mathematics Subject Classification. 11P70, 11B50, 20K01, 11B30.
 Key words and phrases. Davenport constant, zero-sum sequence, group algebras.
 This work was supported by the Austrian Science Fund FWF, Doctoral Program C75-N13 Discrete Mathematics.

[^1]: ${ }^{1}$ Alternatively (2), together with $l^{(\nu)} \geq \frac{3}{2} p-1, p \geq 5$ and $k \leq 2$, already implies $k=2$, which yields the same estimate for $l^{(\nu)}$.

