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Abstract. We study factoriality and the class groups of locally acyclic cluster algebras.
To do so, we introduce a new class of rings called finite Laurent intersection rings
(FLIRs), which includes locally acyclic cluster algebras, full-rank upper cluster algebras,
and certain generalized upper cluster algebras and Laurent phenomenon algebras. Our
main results are algorithms to compute the class group of an explicit FLIR, to determine
factoriality, and to compute all factorizations of a given element. The algorithms are
based on multivariate polynomial factorizations, avoiding computationally expensive
Gröbner basis calculations.
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1. Introduction

A basic ring-theoretic question about a cluster algebra or upper cluster algebra is
whether it is factorial, that is, whether every nonzero element admits a unique factorization
into atoms (i.e., irreducible elements), up to order and units. Upper cluster algebras
are often noetherian and integrally closed, or are at least Krull domains, in which case
they are factorial if and only if their (divisor) class group is trivial. The more general
question is therefore to determine the class group. This gives a complete picture of the
factorization theory even in the non-factorial case.

Geiss, Leclerc, and Schröer first studied the factoriality of cluster algebras, and gave
sufficient conditions [GLS13]. Garcia Elsener, Lampe, and the second author characterized
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the factoriality of cluster algebras with acyclic initial seed and proved an elementary
formula for the class group in terms of the initial exchange matrix [GELS19]. The
determination of the class groups of finite-type and affine cluster algebras follows as an
easy consequence [GELS19, Corollaries 5.16 and 5.17].

Acyclic cluster algebras coincide with their upper cluster algebras [BFZ05; Mul14]. In
general, upper cluster algebras are the more natural objects from a ring-theoretic and
geometric perspective. For instance, they arise as the ring of global sections on A-cluster
varieties [GHK15, Remark 2.9]. Shifting the focus to upper cluster algebras, Cao, Keller,
and Qin [CKQ23] proved that a full-rank upper cluster algebra is factorial if and only if
its initial exchange polynomials are irreducible. The first author extended this to the
determination of the class group [Pom25], and obtained results for generalized cluster
algebras and Laurent phenomenon algebras [Pom26, §4 and §5].

These algebras have in common that, starting from an initial seed, it suffices to consider
a few particular mutations to discover the complete height-one spectrum of the algebra:
in the case of full-rank upper cluster algebras, the Starfish Lemma [BFZ05, Corollary
1.9] shows that it is sufficient to mutate once in each direction from the initial seed. For
acyclic cluster algebras, a sequence of well-chosen freezings and mutations achieves a
similarly explicit understanding of the height-one spectrum [GELS19, §4] [Mul14].

Locally acyclic cluster algebras [Mul13] form a large class of cluster algebras which
coincide with their upper cluster algebras [Mul14]. They include acyclic cluster algebras,
cluster algebras arising from marked surfaces with at least two marked points on each
boundary component [Mul13, Theorem 10.6], coordinate rings of Grassmannians [MS16],
and more generally, of open positroid and braid varieties [GL23; Cas+25].

If A is a locally acyclic cluster algebra, then Spec(A) still has a cluster cover by finitely
many isolated cluster localizations. However, if the exchange matrix does not have full
rank, the cover could involve a complex sequence of mutations. It would be too much to
expect a simple formula for the rank of the class group in terms of the initial seed.

We overcome this problem in the present paper by taking an algorithmic approach:
instead of an explicit formula, we give an algorithm that, given as input a locally acyclic
cluster algebra, computes its class group. This is comparable to the situation of rings of
integers in number fields, where no general formula for the class group is known, but the
class group is computable for any given ring of integers.

Once the class group is computable, it is then trivially decidable whether the algebra
is factorial. But under this computational point of view an additional natural algorithmic
question arises: given an element of the algebra, compute all its factorization into atoms.
We show that this is also possible.

To achieve such computational results, the ground ring itself needs to be computable in
a suitable sense, and a cluster cover by isolated (or acyclic) cluster localizations must be
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explicitly known. The latter condition, while not automatic, is often achievable, because
many cluster algebras are proven to be locally acyclic by the Banff algorithm [Mul13,
§5], which explicitly constructs such a cover. For instance, this is the case for cluster
algebras of surfaces with at least two marked points on each boundary component.

A simplified version of our main result is the following. An exchange matrix satisfies
the Banff property if the Banff algorithm successfully terminates when started with that
matrix. Computable structures are discussed in Section 4.

Theorem 1.1. Let D be a computable Krull domain (such as Q, Q, a finite field, or
Z), and P a computable semifield (such as a tropical semifield). Let (x, y, B) be a seed
with the exchange matrix B satisfying the Banff property, and let A = A(x, y, B) be the
corresponding cluster algebra over D with coefficients in P. Then there exist algorithms
to:

(1) compute the class group Cl(A);

(2) decide whether A is factorial; and

(3) given 0 ̸= a ∈ A, compute all factorizations of a into atoms of A.

In fact, we first introduce a new class of rings, called finite Laurent intersection
rings (FLIRs) in Definitions 3.1 and 3.3, which captures the relevant key properties of
upper cluster algebras in height one. FLIRs have a very simple definition while being
versatile enough to include various generalizations of upper cluster algebras, such as
interesting special cases of generalized cluster algebras and Laurent phenomenon algebras.
Since FLIRs over ground rings that are Krull domains are themselves Krull domains
(Proposition 3.4), they provide a natural setting to study the factorization theory of such
algebras in unified way.

Unlike locally acyclic algebras, the more general class of FLIRs may have deep points
in the sense of [Cas+24; BM25]. However, these deep points have height at least two,
and hence do not impair the study of factorizations (Remark 5.2).

As in [GELS19; Pom25], our methods are based on tools from multiplicative ideal
theory, in particular, Krull domains and Nagata’s Theorem (see Section 2.2 below). The
recently introduced valuation pairings [CKQ23] can be understood in terms of discrete
valuations in this setting [Pom25, §5]. We introduce computational Krull domains in
Definition 4.1, giving a rigorous definition of what it means to be able to perform the
basic operations in a Krull domain algorithmically. Aside from the arithmetic operations,
this includes computations with divisors and class groups. Of course, only some ground
rings, such as Z, Q, Q, number fields and their rings of integers, and finite fields are
really of interest. However, the setting of computable Krull domains allows us to deal
with various ground rings cleanly and uniformly.
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In the setting of computational Krull domains, our main results are that all factor-
izations of an element are computable (Theorem 4.10) and that explicit FLIRs over
computable Krull domains, with a splitting algorithm for the field of fractions, are again
computable Krull domains (Theorem 4.14).

After this groundwork, it is easy to observe that the Banff algorithm shows that Banff
cluster algebras are explicit FLIRs (Theorem 5.8) and to thereby obtain Theorem 1.1.

The framework of FLIRs also straightforwardly applies to recover factorization results
on full-rank upper cluster algebras [CKQ23; Pom25] and acyclic cluster algebras [GELS19].
We do not pursue this for full-rank upper cluster algebras, as it does not offer much over
[Pom25]. For acyclic cluster algebras, we give a simpler and more conceptual proof of
the most technical step of [GELS19] and answer [GELS19, Question 4.8] in Section 7.2.

A key feature of our algorithms is that they are reasonably practical: they completely
avoid the use of Gröbner bases, which can quickly become impractical as the number
of variables or the size of the cluster cover grow. Instead, the algorithms are based on
the Laurent phenomenon and factoring multivariate polynomials, for which practical
algorithms exist [Kal92; Kal03]. In fact, since Laurent polynomial rings are special
cases of upper cluster algebras, the complexity of factoring multivariate polynomials also
provides a natural lower bound for the complexity of factoring elements in upper cluster
algebras. We implemented a prototype version of our algorithms using the computer
algebra system SageMath [Sage25].

In Section 5.3, we also describe an alternative approach, in which the Banff algorithm
is adapted to compute finite presentations of Banff cluster algebras (using Gröbner bases),
and the class group is determined using primary decompositions. The computation of
presentations of upper cluster algebras was first considered by Matherne and Muller
[MM15]. In Section 5.4 we compare the polynomial factorization approach with the
Gröbner basis approach on a family of examples. The results strongly indicate that the
asymptotic performance advantage of our Laurent-phenomenon-based algorithms indeed
translates into a practical performance advantage that greatly extends the class of cluster
algebras for which such computations are even feasible (Table 1).

Acknowledgements. Pompili was partially supported by the Austrian Science Fund
(FWF), project 10.55776/DOC-183-N. Smertnig was supported by the Slovenian Research
and Innovation Agency (ARIS) program P1-0288 and grant J1-60025.

2. Preliminaries

By [1, n] we denote the discrete interval { a ∈ Z : 1 ≤ a ≤ n }. A domain D is a
commutative ring with unity in which zero is the only zero-divisor. By D× we denote its
group of units, and by X(D) the set of height-one prime ideals.
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It will be convenient to use multi-index notation: given a tuple of variables x =
(x1, . . . , xn), we denote by D[x] the polynomial ring D[x1, . . . , xn] and by D[x±1] the
corresponding Laurent polynomial ring. Similarly, if K is a field, then K(x) denotes the
field of rational functions. If m = (m1, . . . , mn) ∈ Zn, we write xm := xm1

1 · · ·xmn
n .

2.1. Factorization. We recall some basic notions from factorization theory; a standard
reference is [GHK06], recent surveys are [Sme16; GZ20; AG21; CG25; GKL26], for a
category-theoretical point of view see [CCT25]. Recent generalizations of these notions
are studied in [AF11; Tri22; CT24; Cos25]. Let D be a domain.

A nonzero nonunit u ∈ D is an atom (equivalently, an irreducible element) if u = ab

with a, b ∈ D implies a ∈ D× or b ∈ D×. A nonzero nonunit p ∈ D is a prime element
if p | ab implies p | a or p | b for all a, b ∈ D. Every prime element is an atom, but in
general not conversely.

The domain D is atomic if every nonzero nonunit is a product of atoms; it is factorial
if every nonzero element is a product of prime elements. The following is standard.

Theorem 2.1. For an atomic domain, the following statements are equivalent.

(a) The domain D is factorial.

(b) Every atom of D is prime.

(c) Any two factorizations of the same element into atoms differ only in the order and
in the associates of the atoms.

Here, two elements a, b ∈ D are associates if aD = bD, equivalently, if there exists a
unit ε ∈ D× such that a = εb. Being atomic is in general a much weaker property than
being factorial.

The domains under consideration in this paper will always be finite factorization domains
(FFDs): each nonzero element has only finitely many distinct factorizations into atoms, up
to order and associativity of the factors [GHK06, Chapter 1.5] [AG21]. In such domains,
it makes sense to ask to compute all factorizations of a given element.

2.2. Krull Domains and Class Groups. Krull domains are a central class of rings
studied in multiplicative ideal theory and factorization theory. For our purposes, the
classical treatment in [Fos73] is sufficient. Other classical references are [Gil92] [Bou72,
Chapter VII]. Modern treatments can be found in [GHK06; Ell19; WK24; Hal25].

Krull domains have many equivalent characterizations, the following will be most
useful to us. Let D be a domain with field of fractions K.

Definition 2.2. The domain D is a Krull domain if there exists a family of discrete
valuation rings (DVRs) (Vi)i∈I with K as field of fractions such that
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(i) D = ⋂
i∈I Vi, and

(ii) for every 0 ̸= a ∈ D, the set { i ∈ I : a /∈ V ×
i } is finite.

The second property is known as the finite character property.
If P ∈ X(D) is a height-one prime ideal of a Krull domain D, then the localization

DP is a DVR [Fos73, Proposition 1.9], and

D =
⋂

P ∈X(D)
DP .

Subintersections of Krull domains, finite intersections of Krull domains with the same
field of fractions, and localizations of Krull domains are easily seen to be again Krull
domains [Fos73, Chapter 1]. Fields and factorial domains are Krull domains.

2.2.1. (Laurent) Polynomial Rings. A polynomial ring D[x] is a Krull domain if and only
if the base ring D is a Krull domain, and the same is true for D[x±1]. The height-one
spectrum is in bijection with the disjoint union X(D) ⊔ X(K[x]), respectively, with
X(D)⊔X(K[x±1]). This is not hard to check, and also follows from analogous statements
holding more generally for Krull monoid algebras [Gil84, §15].

More specifically, if P ∈ X(D[x]), then there are two possibilities.

• If P ∩D ̸= 0, then P ∩D ∈ X(D) and P = (P ∩D)[x]. The associated valuation
vP : K(x)→ Z ∪ {∞} is on D[x] defined by

vP

(∑
m

amxm
)

= min{ vP ∩D(am) : m }.

• If P ∩ D = 0, then P localizes to a height-one prime ideal of K[x] and P =
PK[x]∩D[x]. Since K[x] is factorial, there exists an irreducible polynomial p ∈ K[x]
with PK[x] = pK[x], and vP (f) = vp(f) is the multiplicity of p in f for f ∈ D[x].

For the Laurent polynomial ring D[x±1], the same argument shows that X(D[x±1]) is
in bijection with the disjoint union of X(D) and X(K[x±1]), that is, in contrast to D[x],
the prime ideals (x1), . . . , (xn) do not occur.

2.2.2. Divisorial Ideals and Divisors. Let D be a Krull domain. A fractional ideal of D

is a nonzero1 D-submodule I of K for which there exists x ∈ K× with xI ⊆ D. For a
fractional ideal I, let

I−1 := (D : I) := {x ∈ K : xI ⊆ D } and Iv := (I−1)−1.

Then I is divisorial if I = Iv.
1Sometimes the zero module is allowed, but we exclude it here since this is unnecessary and avoids us
having to exclude it all the time. Correspondingly, for us Fv(D) will be the set of all nonzero divisorial
fractional ideals, whereas other texts commonly write Fv(D)× to exclude 0.
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The set of nonzero divisorial prime ideals of D is precisely the set of height-one prime
ideals X(D) [Fos73, Theorem 3.12]. With the operation of v-multiplication, defined by
I ·v J := (IJ)v, the set of divisorial fractional ideals Fv(D) forms a free abelian group
with basis X(D) and identity element D [Fos73, Corollary 3.14]. Explicitly, for I ∈ Fv(D),
there is a unique presentation

I =
∏v

P ∈X(D)
P vP (I), (1)

where the symbol
∏v denotes the v-product, where vP (I) ∈ Z, and where all but finitely

many factors are trivial, that is, equal to D.
Divisorial closure commutes with localization, explicitly S−1Iv = (S−1I)v for I ∈ Fv(D)

and a multiplicative set S ⊆ D [Fos73, Corollary 5.5]. Localizing at P ∈ X(D), one sees
that vP (I) = min{ vP (a) : a ∈ I }.

Eq. (1) motivates the notion of divisors. We call X(D) the set of prime divisors of D. A
divisor E is then a formal Z-linear combination of prime divisors, that is,

E =
∑

P ∈X(D)
nP P, nP ∈ Z, almost all 0.

The set of divisors, denoted by Div(D), is a free abelian group with basis X(D). For
a ∈ K×, the principal divisor associated to a is

div(a) := divD(a) :=
∑

P ∈X(D)
vP (a)P.

Let Princ(D) denote the subgroup of principal divisors.
The isomorphism Fv(D) ∼= Div(D) of free abelian groups maps the v-product of

divisorial fractional ideals to addition in Div(D). Additionally [Fos73, Proposition 5.9],

div
(
(I + J)v

)
= min{div(I), div(J)} =

∑
P ∈X(D)

min{vP (I), vP (J)}P.

While the isomorphism is vacuous algebraically, it will be important for the computa-
tional considerations later on: a divisorial fractional ideal is most naturally represented
by a (finite) set of generators: I = (a1, . . . , an)v. A divisor is most naturally represented
as a formal linear combination of prime divisors, that is, by giving the coefficients.
Passing between the two representations is computationally a non-trivial task, making it
important to distinguish between the two different representations.

2.2.3. Class Groups. The class group is the main invariant of a Krull domain, with its
computation being a central task of the present paper.

Definition 2.3. The (divisor) class group of a Krull domain D is

Cl(D) := Fv(D)/{ aD : a ∈ K×} ∼= Div(D)/ Princ(D).
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Remark 2.4. A noetherian domain is a Krull domain if and only if it is integrally closed
(that is, normal) [GHK06, Theorem 2.10.2]. In this case Div(D) coincides with the group
of Weil divisors on Spec(D), and the class group Cl(D) is the corresponding Weil divisor
class group.

The importance of Krull domains and their class groups for factorization theory is
highlighted by the following classical result.

Theorem 2.5 ([Fos73, Proposition 6.1]). A domain D is factorial if and only if it is a
Krull domain with trivial class group.

Using the unique factorization in Fv(D), it is easy to see that Krull domains are FFDs.
Knowledge of the class group together with the distribution of prime divisors among
classes allows one to describe the arithmetic of D in great detail: modulo invertible
elements, the multiplicative monoid of D is uniquely determined up to isomorphism by
these data [GHK06, Theorem 2.5.4.3]. Using transfer homomorphisms to monoids of
zero-sum sequences one can study the factorization theory of D [GHK06] [GZ20, §5]
[Ger16, §3].

We need results on the behavior of class groups under localization and polynomial
extensions. There is a homomorphism

Fv(D)→ Fv(S−1D), I 7→ S−1I,

that induces a homomorphism Cl(D) → Cl(S−1D). Nagata’s Theorem describes the
kernel.

Theorem 2.6 (Nagata’s Theorem [Fos73, Corollary 7.2]). Let D be a Krull domain and
let S ⊆ D \ {0} be a multiplicative subset. Then there is an exact sequence

0 H Cl(D) Cl(S−1D) 0,

where H is the subgroup of Cl(D) generated by those P ∈ X(D) with P ∩ S ̸= ∅.

Corollary 2.7 ([Fos73, Chapter 8] or [Gil84, §16]). If D is a Krull domain, then

Cl(D) ∼= Cl(D[x]) ∼= Cl(D[x±1]),

with the first isomorphism induced by extension of divisorial fractional ideals: [I] 7→[
ID[x]

]
for I ∈ Fv(D), and the second one by localization.

2.3. Cluster Algebras and Seeds. We recall cluster algebras and upper cluster algebras,
standard references are [FZ02; FZ03; BFZ05; Wil14; FWZ24; FWZ21b; FWZ21a].

(Upper) cluster algebras are defined over a ground ring D. In the context of combina-
torics, the ground ring often does not matter too much and is commonly taken to be Q,
R, or Z. By contrast, the ring-theoretic properties we investigate depend heavily on the



FACTORIALITY AND CLASS GROUPS OF UPPER CLUSTER ALGEBRAS AND FLIRS 9

choice of D. We allow arbitrary domains D (including those of positive characteristic) as
ground rings, but for the factorization-theoric results we will have to restrict to Krull
domains D later on. This class is nevertheless wide, as it includes all fields and factorial
domains, such as the integers.

2.3.1. Seeds and Mutations. Let (P,⊕, ·) be a semifield: a torsion-free2 abelian group (P, ·)
together with an additional commutative semigroup structure ⊕ such that the product
distributes over ⊕. The main example is the tropical semifield Trop(y1, . . . , ym), which is
generated by variables y1, . . . , ym with the auxiliary addition

m∏
i=1

yai
i ⊕

m∏
i=1

ybi
i :=

m∏
i=1

y
min(ai,bi)
i .

In this case, the group algebra DP is isomorphic to the Laurent polynomial ring D[y±1].
Let K be the field of fractions of DP, and let F be the field of rational functions in n

variables over K. A seed of rank n is a triple (x, y, B) consisting of

• a cluster: a tuple x = (x1, . . . , xn) whose elements generate the field F ⊇ K.

• coefficients: a tuple y = (y1, . . . , yn) ∈ Pn, and

• an exchange matrix: an n× n skew-symmetrizable integer matrix B = (bij), that is,
there exist positive integers d1, . . . , dn such that dibij = −djbji for all i, j ∈ [1, n].

The elements of a cluster are called cluster variables.
To allow char D = 2, we make one extra assumption on the seed (similar to [Ben+15]):

if char D = 2 and the k-th row of B is zero, then we must have yk ̸= 1. This will ensure
that mutation is well-defined.

A seed (x, y, B) can be mutated in any direction k ∈ [1, n] to produce a new seed
(µk(x), µk(y), µk(B)) as follows.

• The tuple µk(x) arises from x, by replacing xk by x′
k, defined by

xkx′
k = yk

yk ⊕ 1
∏

bik>0
xbik

i + 1
yk ⊕ 1

∏
bik<0

x−bik
i ,

and leaving all other variables unchanged.

• Set µk(y) = (y′
1, . . . , y′

n) with

y′
j =


y−1

k if j = k,

yj(yk ⊕ 1)−bkj if j ̸= k and bkj ≤ 0,
yj(y−1

k ⊕ 1)−bkj if j ̸= k and bkj ≥ 0.

2To ensure that the group algebra DP is a domain.
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• If B = (bij), then µk(B) = (b′
ij) with

b′
ij =



−bij if i = k or j = k,

bij + bikbkj if bik > 0 and bkj > 0,

bij − bikbkj if bik < 0 and bkj < 0,

bij otherwise.

The polynomials fk = xkx′
k ∈ DP[x] are the exchange polynomials associated to the

seed (x, y, B).
Mutation of x depends on the ground ring D, as the addition is carried out over D,

while mutation of y and B does not depend on D. Since the ground ring is usually fixed,
it is not reflected in the notation. If we want to emphasize the dependence on D, we
write (x, y, B; D) for the seed.

Remark 2.8. If char D = 2, then the assumption on B and yk ensures xkx′
k ̸= 0, thereby

ensuring that µk(x) is again a tuple of generators for F . It is easy to check that the
assumption is retained under mutation.

Two seeds are mutation-equivalent if one can be obtained from the other by a sequence
of mutations.

2.3.2. Cluster Algebras.

Definition 2.9. Let D be a domain, let P be a semifield, and let F be the field of rational
functions in n variables over the field of fractions of DP. Let (x, y, B) be a seed.

(1) The cluster algebra A := A(B) := A(x, y, B; D) associated with the initial seed
(x, y, B) is the DP-subalgebra of F generated by all cluster variables in all seeds
mutation-equivalent to (x, y, B).

(2) The upper cluster algebra U := U(B) := U(x, y, B; D) associated with the initial seed
(x, y, B) is

U(x, y, B; D) =
⋂
x̃

DP[x̃±1],

where the intersection is over all clusters x̃ in seeds mutation-equivalent to (x, y, B).

Theorem 2.10 (Laurent phenomenon [FZ02, Theorem 3.1]). Every cluster variable is
a Laurent polynomial in the variables of any given cluster. In other words, there is an
inclusion A ⊆ DP[x±1] for any cluster x.

This is typically proven for D = Z and easily carries over to any domain of characteristic
0: in this case ZP ⊆ DP and all mutation operations occur in the subring ZP. We sketch
that the same approach works in arbitrary characteristic if some care is taken.
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Proof sketch for arbitrary domains D. Let p = char D ≥ 0. There is a ring homomor-
phism

π : ZP→ (Z/pZ)P ↪→ DP,

with kernel pZP. This induces a homomorphism π : ZP[x±1]→ DP[x±1] ⊆ F .
If we consider the cluster algebra defined over Z by the seed (x, y, B;Z), we get

π(xkx′
k) = yk

yk ⊕ 1
∏

bik>0
π(xi)bik + 1

yk ⊕ 1
∏

bik<0
π(xi)−bik .

Since we know that x′
k is a Laurent polynomial in the xi over ZP (by the Laurent

phenomenon over ZP), the left side is equal to π(xk)π(x′
k) (keep in mind that π is only

defined on ZP[x±1], not on its field of fractions). Inductively, we see that mutation
and application of π interchange, and the Laurent phenomenon over ZP for (x, y, B;Z)
implies the Laurent phenomenon over DP for (x, y, B; D). □

The Laurent phenomenon shows that there is always an inclusion A ⊆ U between a
cluster algebra and its upper cluster algebra. The equality

A = U

is true in many important subclasses of cluster algebras, in particular in locally acyclic
ones [Mul14].

2.3.3. Locally Acyclic Cluster Algebras. Localizing a cluster algebra in general does not
again yield a cluster algebra. This led Muller to the notions of freezings and cluster
localizations [Mul13; Mul14]. While the ground ring in [Mul14] is Z, the arguments go
through for arbitrary domains D.3

Let (x, y, B) be a seed of rank n. Its freezing at a subset S := {xi1 , . . . , xis} ⊆
{x1, . . . , xn} of the cluster x is obtained as follows.

• Replace P by
P† := P⊕ Trop(xi1 , . . . , xis) ∼= P⊕ Z|I|

with

(p, xa1
i1
· · ·xas

is
)⊕ (q, xb1

i1
· · ·xbs

is
) := (p⊕ q, x

min(a1,b1)
i1

· · ·xmin(as,bs)
is

).

• Remove the entries of S from x to obtain an n− s tuple x†,

• Define y† = (y†
j : j ∈ [1, n] \ {i1, . . . , is}) (in order) with entries

y†
j = yjx

bi1j

i1
· · ·xbisj

is
.

3In particular, this is true for the key [Mul14, Lemma 1], which shows that if A† = U† for a freezing,
then A† is a cluster localization of A, and for [Mul14, Proposition 3], which shows A = U for isolated
cluster algebras.
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• Remove the rows and columns with indices i1, . . . , is from B to obtain B†.

The frozen seed (x†, y†, B†) defines a cluster algebra A[x†
i1

, . . . , x†
is

] of rank n−s called
the freezing of A at xi1 , . . . , xis , and similarly defines a freezing U [x†

i1
, . . . , x†

is
] of U . The

effect of freezing a variable xij is to move it into the coefficient semifield (which also
means adjoining its inverse x−1

ij
) and to remove it from the mutation process.

Definition 2.11. A cluster localization of a cluster algebra A is a freezing A[x†
i1

, . . . , x†
is

]
such that

A[x†
i1

, . . . , x†
is

] = A[x−1
i1

, . . . , x−1
is

].

A cluster algebra is isolated if the exchange matrix is the zero matrix. A finite family
A1, . . . , Al of cluster localizations of A is a cluster cover of A if for every P ∈ Spec(A),
there exists some i with PAi ̸= Ai. Geometrically, this means that Spec(A) is covered by
the images of the maps Spec(Ai)→ Spec(A) induced by the localizations. In particular,
one has A = ⋂l

i=1 Ai [Mul14, Proposition 2]

Definition 2.12 ([Mul14, Definition 2]). A cluster algebra A is locally acyclic if it has a
cluster cover by isolated cluster algebras.

A seed (x, y, B) is acyclic if there is no sequence i1, . . . , il ∈ [1, n] with l ≥ 2 such
that bisis+1 > 0 for all s ∈ [1, l − 1], and i1 = il. A cluster algebra is acyclic if it has
an acyclic seed (acyclicity is not mutation-invariant). Locally acyclic cluster algebras
equivalently can be defined as those cluster algebras that have a cluster cover by acyclic
cluster algebras.

The main results of [Mul14] carry over from Z to arbitrary domains D.

Theorem 2.13 ([Mul14, Theorem 2]). If A is locally acyclic, then A = U .

Remark 2.14. The equality A = U also holds for cluster algebras arising from surfaces
without punctures and one marked point on the boundary [CLS15], for cluster algebras
of moduli spaces of G-local systems [IOS23], and symmetric Poisson nilpotent algebras
[GY23]. The equality is sensitive to the ground ring [BMS19].

Locally acyclic cluster algebras are, as intersections of integrally closed domains,
always integrally closed. Suppose D is noetherian and P is finitely generated. Then
DP is noetherian, and locally acyclic cluster algebras over D with coefficients in P are
finitely generated as DP-algebras [Mul13, Theorem 4.2] (using [Sta25, Lemma 00EP]).
In particular, such cluster algebras are noetherian and integrally closed, and hence
Krull domains. Below we will extend this result to ground rings that are Krull domains
(Theorem 5.4).

https://stacks.math.columbia.edu/tag/00EP


FACTORIALITY AND CLASS GROUPS OF UPPER CLUSTER ALGEBRAS AND FLIRS 13

Remark 2.15. In general, it is not possible to cover Spec(A) by cluster tori, that is, by
localizations of the form DP[x±1] for clusters x of A, even when A is acyclic. Indeed, if
a cover by cluster tori exists, then A is non-singular [BM25, Proposition 2.4]. However,
even acyclic cluster algebras, such as the An-type cluster algebras, can have singularities
[Ben+23].

3. Laurent Intersection Rings

In this section we introduce (finite) Laurent intersection rings and determine their
class groups (Theorem 3.7). This lays the algebraic groundwork for the computational
work in Section 4. We also discuss iterated Laurent intersection rings in Section 3.1 and
conclude with a full characterization of the (easy) one-variable case, in Section 3.2.

Definition 3.1. Let D be a domain with field of fractions K and let K(x) with x =
(x1, . . . , xn) be the field of rational functions in n variables. A subring A ⊆ K(x) is a
Laurent intersection ring over D (or D-LIR) if there exists a nonempty set S ⊆ K(x)n

such that

(i) we have K(x) = K(y) for all y ∈ S,

(ii) we have
A =

⋂
y∈S

D[y±1],

(iii) and D[y] ⊆ A for all y ∈ S.

If the base ring D is clear from context, we just write that A is a Laurent intersection
ring or a LIR. If A is a LIR, a set S satisfying properties (i)–(iii) is called a system of
charts. An element of S is a chart.

By definition, a chart consist of n algebraically independent elements over K that
generate the entire field K(x). By a change of variables on K(x), we may therefore
assume x ∈ S whenever convenient. If n = 0, then A = D. We usually exclude this
trivial case.

Ultimately, we are interested in Krull domains in this class of rings, where the following
holds.

Lemma 3.2. Let D be a domain. If A is D-LIR and a Krull domain, then every system
of charts S for A contains a finite subsystem of charts {y(0) = x, y(1), . . . , y(r)} ⊆ S.
Moreover, each P ∈ X(A) extends non-trivially to at least one of the localizations
D[y(i)±1] = A[y(i)−1] with i ∈ [0, r].

Proof. Let S be a system of charts for A. By definition, we have A = ⋂
P ∈X(A) AP , where

the AP are DVRs and the intersection has finite character. If y = (y1, . . . , yn) ∈ S,
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then D[y±1] = A[(y1 · · · yn)−1] is a localization since D[y] ⊆ A by (iii) of Definition 3.1.
Therefore,

D[y±1] =
⋂

P ∈X(A)
y1···yn ̸∈P

AP ,

by [Fos73, Proposition 1.8].
Fix some x = (x1, . . . , xn) ∈ S. By the finite character property of a Krull domain,

there are only finitely many P1, . . . , Pr ∈ X(A) with x1 · · ·xn ∈ Pi. Using (ii) of
Definition 3.1, ⋂

P ∈X(A)
AP = A =

⋂
y∈S

D[y±1] =
⋂

y∈S

⋂
P ∈X(A)

y1···yn ̸∈P

AP .

Removal of any DVR AP in the first intersection yields a proper overring (by the
Approximation Theorem for Krull domains [Fos73, Theorem 5.8], there exists an f ∈ K(x)
such that vP (f) < 0 and vQ(f) ≥ 0 for all Q ∈ X(A) \ {P}). It follows that, for each i,
there exists some y(i) = (y1(i), . . . , yn(i)) ∈ S such that y1(i) · · · yn(i) ̸∈ Pi. Hence,

A = D[x±1] ∩
r⋂

i=1
D[y(i)±1],

and so
{
x, y(1), . . . , y(r)

}
is a finite system of charts for A. □

The previous lemma motivates the following key definition.

Definition 3.3. Let D be a domain. A ring A is a finite Laurent intersection ring over D

(or D-FLIR) if it is a D-LIR having a finite system of charts.

Proposition 3.4. Let A be a LIR over some domain D. Then A is a Krull domain if
and only if D is a Krull domain and A is a D-FLIR.

Proof. Suppose first that D is a Krull domain and that A is a finite Laurent intersection
ring, say A = ⋂

y∈S D[y±1] with S ⊆ K(x)n. Each D[y±1] is a Krull domain, and finite
intersections of Krull domains with the same field of fractions are Krull domains, so A is
a Krull domain.

Conversely, if A is a Krull domain and x is a chart for the Laurent intersection ring
A, then the localization A[(x1 · · ·xn)−1] = D[x±1] is a Krull domain. Therefore, the
ground ring D is a Krull domain. Lemma 3.2 shows that A is a finite Laurent intersection
ring. □

If D ⊆ A is an extension of Krull domains, there is a natural homomorphism
Fv(D) 7→ Fv(A) given by I 7→ (IA)v. If the extension satisfies the property PDE
(for pas d’èclatement), meaning ht(P ∩D) ≤ 1 for every P ∈ X(A), then this induces
a homomorphism Cl(D)→ Cl(A) [Fos73, Theorem 6.2 and Proposition 6.3]. We verify
that D-FLIRs satisfy the PDE property.
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Lemma 3.5. Let A be a D-FLIR over a Krull domain D. Then ht(P ∩D) ≤ 1 for every
P ∈ X(A).

Proof. If P ∈ X(A), there exists a chart y such that PD[y±1] ̸= D[y±1]. Since D[y±1] is
a localization of A, then also ht(PD[y±1]) = 1. If there exists 0 ̸= Q ∈ Spec(D) such
that Q ⊆ P ∩D, then

0 ̸= QD[y±1] ⊆ (P ∩D)D[y±1] ⊆ PD[y±1],

hence QD[y±1] = PD[y±1], since the latter has height one, and so Q = P ∩D. This
shows ht(P ∩D) ≤ 1. □

We can now determine Cl(A) in terms of Cl(D). In a first step, we show that Nagata’s
Theorem leads to split short exact sequence.

Lemma 3.6. Let A be a D-FLIR over a Krull domain D and let x = (x1, . . . , xn) be a
chart. Then there is a commutative diagram

0 H Cl(A) Cl(D[x±1]) 0

Cl(D)

α
∼β

ϕ

with α([I]) =
[
ID[x−1]

]
for I ∈ Fv(A), with β([J ]) =

[
JD[x±1]

]
and ϕ([J ]) = [(JA)v]

for J ∈ Fv(D), and with H generated by the classes of those P ∈ X(A) containing
x1 · · ·xn. The top row is exact, and the map ϕ ◦ β−1 splits the short exact sequence in
the top row. In particular,

Cl(A) ∼= Cl(D)⊕H.

Proof. Since A[x−1] = D[x±1] is the localization of A at the multiplicative set gener-
ated by x1, . . . , xn, Nagata’s Theorem (Theorem 2.6) yields the exact top row of the
commutative diagram, with H and α as claimed.

Further, there is an isomorphism β given by extension of ideals, that is, for J ∈ Fv(D),
we have β([J ]) =

[
JD[x±1]

]
[Fos73, Theorem 8.1].

Because of Lemma 3.5, extension of divisorial fractional ideals induces a homomorphism
ϕ : Cl(D) → Cl(A), given by ϕ([J ]) = [(JA)v] for J ∈ Fv(D). We verify that ϕ ◦ β−1

splits the short exact sequence. This means showing α ◦ ϕ = β. Let J ∈ Fv(D). Then

α ◦ ϕ([J ]) = α([(JA)v]) =
[
(JA)vD[x±1]

]
=
[
(JD[x±1])v

]
=
[
JD[x±1]

]
= β([J ]).

Since the short exact sequence splits, in particular Cl(A) ∼= Cl(D)⊕H. □

We can now give an explicit description of Cl(A).
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Theorem 3.7. Let A be a D-FLIR over a Krull domain D, and let x be a chart. Then

Cl(A) ∼= Cl(D)⊕ Zr / ⟨c1, . . . , cn⟩

where P1, . . . , Pr are the height-one primes that contain x1 · · ·xn and ci = (cij)1≤j≤r ∈ Zr

is such that xiA =
∏v

1≤j≤r
P

cij

j .

Proof. Let P1, . . . , Pr be the height-one primes of A containing x1 · · ·xn. Lemma 3.6
shows Cl(A) ∼= Cl(D)⊕H with H generated by [P1], . . . , [Pr]. Therefore, it is sufficient
to prove

H ∼= Zr / ⟨c1, . . . , cn⟩.

The proof is the same as in [GELS19, Thereom 3.1]. We include it for the sake of
completeness.

We need to prove that if ∑r
j=1 mj [Pj ] = 0 in H for some m1, . . . , mr ∈ Z, then there

exist u1, . . . , un ∈ Z such that mj = ∑n
i=1 uicij for all i ∈ [1, r]. Then (m1, . . . , mr) =∑n

i=1 uici, and the claim follows.
So assume ∑r

j=1 mj [Pj ] = 0. Then
∏v

1≤j≤r
P

mj

j is a fractional principal ideal of A,
say ∏v

1≤j≤r

P
mj

j = aA (2)

for some 0 ̸= a ∈ K(x), where K is the field of fractions of D. Localizing at the
multiplicative set generated by x1, . . . , xn,

aA[x−1] = aD[x±1] =
∏v

1≤j≤r
x1···xn ̸∈Pj

(PjD[x±1])mi = D[x±1],

since x1 · · ·xn ∈ Pj for all j ∈ [1, r] by choice of the Pj .
We find a ∈ D[x±1]×, and hence a = εxu1

1 · · ·xun
n for some ε ∈ D× ⊆ A× and

u1, . . . , un ∈ Z. Substituting the factorizations of xiA, we get

aA =
∏v

1≤i≤n

( ∏v

1≤j≤r

P
cij

j

)ui

=
∏v

1≤j≤r

P

∑n

i=1 uicij

j . (3)

Comparing the exponents of Pj in the two factorizations of a into height-one primes in
Eq. (2) and Eq. (3), we obtain mj = ∑n

i=1 uicij for all j ∈ [1, r], as desired. □

Remark 3.8. The class group of a FLIR need not be torsion-free, even for factorial
D: for example, full rank generalized upper cluster algebras are FLIRs by [GSV18,
Theorem 3.11], and their class group can also have torsion [Pom26, Examples 4.13].
Similarly, we will see below that one-variable FLIRs may have torsion in their class group
(Example 3.16). On the other hand, the class group of an upper cluster algebra that is a
Krull domain is always torsion-free [Pom25, Theorem 4.4].
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To understand the factorization theory of a Krull domain globally (that is, its arithmetic
invariants), it is not sufficient to know its class group, but one also needs to know how
many height-one prime ideals lie in each class. Then the multiplicative monoid of A

modulo A× is uniquely determined up to isomorphism [GHK06, Theorem 2.5.4.3].
For cardinality reasons, there are at most min{|D|,ℵ0} many height-one prime ideals

in A. The following shows that this upper bound is attained in each class, thereby giving
a complete description of the distribution of prime divisors in the class group of a FLIR
over a Krull domain. This is analogous to the situation in Krull monoid algebras [FW22].

Theorem 3.9. If A is a FLIR in n ≥ 1 variables over a Krull domain D, then every
class of Cl(A) contains min{|D|,ℵ0} height-one prime ideals.

To study the factorization of any given element a ∈ A, it is however not necessary to
know this distribution: it is sufficient to work with the finitely many height-one prime
ideals containing a. We therefore postpone the somewhat lengthy proof of Theorem 3.9
to Section 6.

3.1. Iterated FLIRs. Iterated FLIRs will be useful in Section 5 and Section 7 to deal
with isolated cluster algebras and freezings of cluster algebras.

Definition 3.10. Let D be a domain. A ring A is an iterated LIR over D, respectively
an iterated FLIR over D, if there exist rings D = A0 ⊆ A1 ⊆ · · · ⊆ Ar = A such that each
Ai is an Ai−1-LIR, respectively an Ai−1-FLIR, for i ∈ [1, r].

The important observation is that iterating the LIR construction still yields a LIR
over the original ground ring.

Proposition 3.11. If A is an iterated LIR over D, then it is a D-LIR. More specifically,
if Si is a system of charts for Ai over Ai−1 for each i ∈ [1, r], then

S = {
(
x(1), x(2), . . . , x(r)

)
: x(i) ∈ Si for i ∈ [1, r] } ∼= S1 × · · · × Sr.

is a system of charts for A over D.

Proof. We prove the claim by induction on r. The case r = 1 is trivial. So assume
r > 1 and that the claim holds for r − 1. Then Ar−1 is a D-LIR with system of charts
T ∼= S1 × · · · × Sr−1 and A is an Ar−1-LIR with system of charts Sr. Then

A =
⋂

x∈Sr

Ar−1[x±1] =
⋂

x∈Sr

( ⋂
y∈T

D[y±1]
)
[x±1] =

⋂
(y,x)∈T ×Sr

D[y±1, x±1].

This shows (ii) of Definition 3.1. To check (i) and (iii) of Definition 3.1, let x ∈ Sr and
y ∈ T . Then

K(x, y) = K(y)(x) and D[y, x] = D[y][x] ⊆ Ar−1[x] ⊆ A. □
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We obtain the following consequence, by using finite sets Si.

Corollary 3.12. If A is an iterated FLIR over a domain D, then it is a D-FLIR.

Since a Laurent polynomial ring is trivially a FLIR, we also obtain the following.

Corollary 3.13. Let D[t±1] be a Laurent polynomial ring in a finite number of variables
over a domain D. If A is a D[t±1]-FLIR with system of charts S, then A is a D-FLIR
with system of charts

{ (t, x) : x ∈ S }

3.2. One-variable LIRs. We discuss the special case of one-variable LIRs, where a
complete classification is possible. This simple case provides explicit examples of LIRs
and sheds some light on the difference between LIRs and upper cluster algebras. In
addition, the classification of the one-variable case is used in Section 6.

Proposition 3.14. If A is a D-LIR over a domain D in n = 1 variables, then A ∼= D[x]
or A ∼= D[x±1] ∩D[(a/x)±1] = D[x, a/x] with 0 ̸= a ∈ D.

In the first case, the polynomials x and x + 1 form a system of charts for A. In the
second case, the Laurent polynomials x and a/x form a system of charts.

Proof. Fix a chart x, and consider another chart y ∈ D(x). We first show that only the
two cases

y = a/x or y = ux + a with a ∈ D and u ∈ D×

can occur.
Since y ∈ D[x±1] and x ∈ D[y±1], we have y = f(x)/xm and x = g(y)/yn for some

nonzero f , g ∈ D[t] and m, n ∈ Z with t ∤ f and t ∤ g.
Substituting the expressions into each other, we get

x = g(f(x)/xm)
(f(x)/xm)n

.

If m ≠ 0, then the order of vanishing at 0 on the right-hand side is m(n − d) where
d = deg(g). Since m(n− d) = 1, we have (m, n− d) = (1, 1) or (m, n− d) = (−1,−1).

We distinguish three cases.

• If m = 0, then y = f(x). From y = f(g(y)/yn) we easily find that also n = 0, and so
x = g(y). Thus, deg(f) = deg(g) = 1, and so y = ux + a with a ∈ D and u ∈ D×.

• If m = 1 and n = d + 1, then

f(x)d+1 =
d∑

i=0
gif(x)ixd−i with g(t) =

d∑
i=0

git
i.

If deg(f) ≥ 1, this is impossible by comparing degrees. So f is constant, and y = a/x

with a ∈ D.
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• If m = −1 and n = d− 1, then

xn+1f(x)n = g(f(x)x).

Since g(0) ̸= 0, the right-hand side has order 0 at 0, which gives n = −1. Looking
at the equation again, now yields that f and g are constant, hence y = ux with
u ∈ D×.

If there is a chart of the form y = ux + a with a ̸= 0, then D[x±1] ∩D[y±1] = D[x].
Thus, we may assume all the charts, except for x itself, are of the form yi = ai/x with
ai ∈ D. We may also assume ai ̸∈ D×, since otherwise D[x±1] = D[y±1

i ].
Now we claim that if there are two such charts y1 and y2 (in addition to x), then

a1 ∈ a2D×. Indeed, we have

y1 = a1
x

= a1
a2

y2 and y2 = a2
x

= a2
a1

y1.

Since y1 ∈ D[y±1
2 ] and y2 ∈ D[y±1

1 ], it follows that a1/a2, a2/a1 ∈ D, hence a1 ∈ a2D×.
We conclude D[y±1

i ] = D[y±1
j ] for all i, j. Therefore, we have A = D[x±1] ∩D[(a/x)±1]

with a chart y = a/x for some a ∈ D.
Finally, to see D[x±1] ∩D[(a/x)±1] = D[x, a/x], consider f = ∑n

i=−m fix
i ∈ D[x±1]

with fi ∈ D. Then f ∈ D[(a/x)±1] if and only if ai divides f−i whenever i > 0. It follows
that f ∈ D[x, a/x]. □

Example 3.15. Note that {x, a/x} is a system of charts for A = D[x±1] ∩ D[(a/x)±1],
but if a ̸∈ D×, then {x, x/a} is not! While D[(a/x)±1] = D[(x/a)±1], the definition of
a LIR requires in addition that D[y] ⊆ A for each chart y. We have a/x ∈ D[x±1], but
x/a ̸∈ D[x±1] if a ̸∈ D×.

While cluster algebras in one variable (of geometric type, without coefficients) are
trivial to deal with, as only D[x, 2/x] (one isolated vertex) arises, FLIRs in one variable
can already be non-factorial even when the base ring D is factorial, as the following
example shows.

Example 3.16. The ring A = Z[x, 2/x] is the cluster algebra arising from a single mutable
variable. It is factorial (say, by the criterion in [GELS19] for acyclic cluster algebras).

The ring B = Z[x, 6/x] is not a cluster algebra and is not factorial:

6 = 2 · 3 = x · 6
x

are two distinct factorizations of 6 into atoms in B. By inspecting the proof of Case 1 of
Lemma 6.2 below, or by a short direct computation, one sees that B has two height-one
prime ideals lying over (x), namely (x, 2) and (x, 3). Furthermore, since (x) = (x, 2)·(x, 3),
we see Cl(B) ∼= Z2/⟨(1, 1)⟩ ∼= Z from Theorem 3.7.
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More generally, if a = pr1
1 · · · p

rt
t is the prime factorization of some a ∈ Z≥2, and

C = Z[x, a/x], then C has t height-one prime ideals lying over (x), namely (x, pi) for
i ∈ [1, t]. Considering the localization C ′ := C[x/a] = Z[(a/x)±1] at a/x and using
xC ′ = aC ′, shows (x) = (x, p1)r1 · · ·v (x, pt)rt as divisorial product.4 From Theorem 3.7,
we conclude Cl(C) ∼= Zt/⟨(r1, . . . , rt)⟩ ∼= Zt−1 ⊕ Z/(d) where d = gcd(r1, . . . , rt).

The description of height-one primes can be extended to one-variable FLIRs over Krull
domains D, see Lemma 7.5.

4. Computable Krull Domains

In this section we show that over suitable base rings D, such as Z, Fq, Q, Q, as well as
polynomial rings and fields of rational functions over these rings, it is possible to compute
the class group of a D-FLIR as well as all factorizations of a given element into atoms
(up to order and associativity).

To treat the various base rings of interest in a uniform way, we introduce the notion
of a computable Krull domain. This entails that we can represent the elements of the
domain on an idealized computer (e.g., a Turing machine), and that there are algorithms
to perform the basic operations as well as to compute the class group.

In computability theory, several closely related formalizations of computable structures
(computable fields, computable groups, etc.) have been proposed by different authors, for
instance by Fröhlich and Shepherdson [FS56], by Rabin [Rab60], and by Mal’cev [Mal61;
Mal62]. A gentle introduction can be found in [Mil08]; a recent textbook covering the
area is [DM26]. We follow this approach, without going into the details of computability
theory, as our main focus is on the algebraic aspects.

We recall that a computable field is a field K with the following properties. As a set, it
is computably enumerable: the elements of K are thought of as a subset of Z≥0, such
that there is an algorithm that lists all elements a0, a1, . . . of K. More precisely, given as
input i ∈ Z≥0, the algorithm eventually halts with output the field element ai. Further,
there are algorithms to perform addition and multiplication in K: for instance, there is
an algorithm that, given as input i and j ∈ Z≥0 (representing the field elements ai and
aj), outputs k such that ai + aj = ak.

Negation and inversion are then computable as well by an enumeration procedure:
given i ∈ Z≥0, one can search for k such that ai +aj = 0 (respectively, such that aiaj = 1)
by successively trying all elements of K.5 As should be obvious from this example, the
notion of computability makes no claims about the efficiency of the algorithms.

4We need not have (x) = (x, p1)r1 · · · (x, pt)rt without taking the divisorial closure, as can be seen with a
short computation for a = 4.
5The special element 0 can be computed by enumeration as the only solution to ai + ai = ai. Similarly,
the element 1 is the only solution of aiai = ai with ai + ai ̸= ai.
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A computable field is in particular finite or countable, and given any two elements a, b

of the field, one can decide whether a = b or a ̸= b. Obvious examples of computable
fields are Q and Fq. Non-examples are R and C, as these fields are uncountable. Less
obviously, fields of rational functions K(x) [Wae37, §42] [Edw84, §52–§59] and algebraic
closures K [Rab60] over computable fields K are again computable. Computable rings,
domains, and groups can be defined similarly.

For computable Krull domains, we will additionally need to be able to compute with
divisors and their classes. A divisor is a formal Z-linear combination of prime divisors.
While divisors correspond exactly to divisorial fractional ideals (see Section 2.2.2), the
representation as a formal sum lends itself better to the computational aspects. This is
why we emphasize the divisor point of view in this section.

A divisor e1P1+· · ·+e1Pt is represented on a computer as a tuple
(
(e1, P1), . . . , (et, Pt)

)
where ei ∈ Z and the Pi are prime divisors of D. The only non-trivial requirement here is
that we need to have a way of representing the prime divisors in such a way that, given
two prime divisors P and Q, we can decide whether P = Q or P ≠ Q. We enforce this
by requiring that the set of prime divisors of D is also computably enumerable.

This does not appear to be sufficient to allow us to compute the class group or the
class of a divisor. Hence, we add a corresponding assumption.

Definition 4.1. A computable Krull domain is a Krull domain D such that D is com-
putably enumerable,

(C1) addition and multiplication in D are computable,

(C2) the set X(D) of prime divisors is computably enumerable,

(C3) given a ∈ D, it is possible to compute the principal divisor div(a), and

(C4) the class group Cl(D) and the homomorphism Div(D)→ Cl(D) are computable.

The last property means that, given a divisor E of D, we can compute its class [E] in
Cl(D), and that, given two classes [E], [E′], we can decide whether [E] = [E′] and can
compute [E] + [E′].

If D is a computable Krull domain, then its field of fractions K is a computable
field, by the usual pair construction. Given a computable field K, there is in general no
algorithm to decide whether a given polynomial in K[x] is irreducible or not [FS56].

A field with splitting algorithm is a computable field K such that there is an algorithm
to decide whether a given polynomial in K[x] is irreducible or not (equivalently, by
enumeration, for every polynomial a factorization into irreducible factors is computable).
Already Kronecker showed that if K has a splitting algorithm, then so does the field
of rational functions K(x). He also showed the following (transcribed into modern
terminology).
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Proposition 4.2. If K is a computable field with splitting algorithm and f ∈ K[x], it is
possible to compute a factorization of f into irreducible factors.

Proof. A multivariate polynomial f ∈ K[x] can be factored by factoring the univariate
polynomial f(z, zb, . . . , zbn) ∈ K[z] if b ≥ 2 is chosen such that b > degxi

(f) for all i.
This is based on the uniqueness of the base-b representation of integers. See [Wae37, §42]
or [Edw84, §52–§59]. Alternatively, see [BW93, Chapter 2.7] for a modern treatment. □

This motivates the following definition.

Definition 4.3. A computable Krull domain D has a splitting algorithm if its field of
fractions does.

Example 4.4. (1) A field is a computable Krull domain if and only if it is a computable
field. Here (C2), (C3), and (C4) are vacuous.

(2) If K is a computable field, then K[x] is always a computable domain in the sense that
addition and multiplication are computable. However, if K does not have a splitting
algorithm, then K[x] is not a computable Krull domain, as (C3) fails (keeping in
mind that we represent divisors as formal sums of prime divisors).

(3) The ring of integers Z is a computable Krull domain. Further, every ring of integers
O in a number field is a computable Krull domain, by standard results from algebraic
number theory (Minkowski’s geometry of numbers).

(4) Analogous to the number-theoretic setting, in the function field setting, holomorphy
rings of function fields (of transcendence degree one) over finite fields are computable
Krull domains. These are the intersections of all but finitely many valuation rings of
the function field.

Remark 4.5. That we only ask for factorizations in K[x], and not in D[x], to be computable,
will a posteriori be justified by Theorem 4.10 and Proposition 4.11, which show that over
a computable Krull domain with splitting algorithm it is indeed possible to compute
factorizations in D[x].

4.1. Computing Factorizations in Computable Krull Domains. If a divisorial
fractional ideal I of D is given by generators a1, . . . , an, then it is clearly possible to
compute its corresponding divisor div(I) = div(a1) + · · ·+ div(an). The following lemma
shows that the converse direction is also computable.

Lemma 4.6. If D is a computable Krull domain and E ∈ Div(D), it is possible to
decide whether E is principal. If E is principal, it is possible to compute a ∈ D such
that div(a) = E. If E is not principal, it is possible to compute a, b ∈ D such that
min{div(a), div(b)} = E.
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Proof. The divisor E is principal if and only if [E] ∈ Cl(D) is zero. This is decidable by
(C4) in Definition 4.1.

If E is principal, an enumeration now finds a ∈ D such that div(a) = E, using (C3). If
E is not principal, we know that there exist a, b ∈ D such that min{div(a), div(b)} = E

[Fos73, Proposition 5.11]. Enumerating pairs of elements of D, we can again compute
such a pair. □

Remark 4.7. The enumeration procedures in Lemma 4.6 work in principle but are of
course completely impractical. For specific computable Krull domains of interest, one can
often substitute more practical algorithms. For instance, for rings of integers in number
fields, finding a generator of a principal ideal amounts to enumerating lattice points of
small norm in a lattice associated to the divisor (i.e., fractional ideal).

Lemma 4.8. If D is a computable Krull domain and 0 ̸= a ∈ D, it is possible to compute,
up to associativity, all atoms b ∈ D that divide a.

Proof. Compute div(a) = e1P1 + · · · + emPm using (C3) in Definition 4.1. If b | a

then div(b) = k1P1 + · · · + kmPm for some 0 ≤ ki ≤ ei for all i ∈ [1, m]. For each of
the finitely many choices of (k1, . . . , km), use Lemma 4.6 to decide whether the divisor
k1P1 + · · ·+ kmPm is principal. The minimal nonzero elements (k1, . . . , km) for which
this is the case (with respect to the componentwise partial order) correspond to (pairwise
non-associated) atoms dividing a. Using Lemma 4.6 again, compute b ∈ D such that
div(b) = k1P1 + · · ·+ kmPm for these divisors. □

Remark 4.9. Since φ : Zm → Cl(D), Pi 7→ [Pi] is a group homomorphism, the set of all
(k1, . . . , km) corresponding to elements dividing a is given by(

[0, e1]× · · · × [0, em]
)
∩ ker(φ),

and as such corresponds to the lattice points in Zm ∩ ker(φ) of a rational polytope in Rm.

Theorem 4.10. If D is a computable Krull domain and 0 ̸= a ∈ D, it is possible to
compute all factorizations of a into atoms (up to order and associativity).

Proof. By Lemma 4.8, we can compute, up to associativity, all atoms b1, . . . , bn dividing a

(possibly n = 0 if a ∈ D×). Factorizations of a correspond to n-tuples (t1, . . . , tn) ∈ Zn
≥0

such that a = εbt1
1 · · · btn

n with ε ∈ D×. Expressed in terms of divisors, finding all
factorizations is equivalent to finding all (t1, . . . , tn) ∈ Zn

≥0 such that

div(a) = t1 div(b1) + · · ·+ tn div(bn).

Note that the ti are bounded from above, since div(bi) ̸= 0 for each i. Since div(a) and
div(bi) can be computed by (C3) in Definition 4.1, finding the solutions reduces to solving
a system of linear Diophantine equations in Zn

≥0 with finitely many solutions. □
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We summarize the (naive) algorithms suggested by the proofs of Lemma 4.8 and
Theorem 4.10 in pseudocode in Algorithms 1 and 2.6

Algorithm 1 Naive algorithm to compute all atoms dividing a

function AtomsDividing(0 ̸= a ∈ D)
e1P1 + · · ·+ emPm ← div(a) ▷ using (C3)
A← ∅ ▷ will contain atoms
C ← ∅ ▷ will contain coefficient tuples of atoms
for all (k1, . . . , km) ̸= (0, . . . , 0) with 0 ≤ ki ≤ ei do ▷ in lexicographic order

if k1P1 + · · ·+ kmPm is principal then ▷ using Lemma 4.6
if there is no (l1, . . . , lm) ∈ C with li ≤ ki for all i then

b← generator of k1P1 + · · ·+ kmPm ▷ using Lemma 4.6
A← A ∪ {b}
C ← C ∪ {(k1, . . . , km)}

return A

Algorithm 2 Naive algorithm to compute all factorization of a (up to associativity)
function Factorizations(0 ̸= a ∈ D)
{b1, . . . , bn} ← AtomsDividing(a)
F ← ∅
for all (t1, . . . , tn) ∈ Zn

≥0 with div(a) = t1 div(b1) + · · ·+ tn div(bn) do
ε← a/(bt1

1 · · · btn
n ) ▷ computable in K

F ← F ∪
{(

ε, (b1, t1), . . . , (bn, tn)
)}

return F

4.2. (Laurent) Polynomial Rings over Computable Krull Domains.

Proposition 4.11. If D is a computable Krull domain with splitting algorithm, then so
is the polynomial ring D[x].

Proof. Clearly property (C1) in Definition 4.1 is satisfied.
The polynomial ring D[x] is a Krull domain with two types of prime divisors (Sec-

tion 2.2.1): if P ∈ X(D[x]) satisfies D ∩ P ̸= 0, then P is extended from D, that is
P = P ′D[x] with P ′ = D ∩ P ∈ X(D). These prime divisors are computably enumerable
by (C2). Computationally, we simply represent them using the corresponding prime
divisor P ′ of D. In terms of the corresponding valuation, if f = ∑

m amxm ∈ D[x], then
vP (f) = min{ vP ∩D(am) : m }. Therefore, the valuation vP (f) is computable.

If P ∩ D = 0, then P extends to the localization K[x] and P = pK[x] ∩ D[x] for
some irreducible polynomial p ∈ K[x]. Non-associated irreducible polynomials give
6The enumeration of tuples (k1, . . . , km) in lexicographic order in Algorithm 1 ensures that all (l1, . . . , lm)
with li ≤ ki for all i have already been considered, when checking minimality of (k1, . . . , km).
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rise to distinct prime divisors. Hence, prime divisors of this type correspond exactly
to monic irreducible polynomials in K[x] (monic with respect to some arbitrary total
order on monomials). Since K has a splitting algorithm, the set of monic irreducible
polynomials in K[x] is computably enumerable. We represent P by the corresponding
monic irreducible polynomial p ∈ K[x]. In this case vP (f) is simply the multiplicity of p

in the factorization of f in K[x]. Thus, also (C2) and (C3) are satisfied for D[x].
To prove (C4), recall that Cl(D[x]) ∼= Cl(D) by Corollary 2.7, so it is sufficient to

show: given a prime divisor P of D[x], we can compute its class [P ] in Cl(D). If P is
extended from D, then this follows from (C4) of D, because [P ]D[x] = [P ∩D]D.

Now suppose P = pK[x]∩D[x] with p ∈ K[x] irreducible. Since P is in fact represented
by p, this polynomial p is indeed explicitly given. Now

divD[x](p) = P +
r∑

i=1
eiPi,

with P1, . . . , Pr pairwise distinct, with ei ∈ Z, and with Pi ∩D ̸= 0 for all i ∈ [1, r]. The
coefficients ei are computable by (C3) of D[x], which we have already established.

Now
[P ]D[x] = −

[ r∑
i=1

eiPi

]
D[x]

= −
r∑

i=1
ei[Pi ∩D]D,

and the last class is computable by (C4) of D. Therefore, property (C4) holds for D[x]
as well.

Finally, since K has a splitting algorithm, so does K(x). □

Corollary 4.12. If D is a computable Krull domain with splitting algorithm, then so is
the Laurent polynomial ring D[x±1].

Proof. Clearly (C1) in Definition 4.1 is satisfied. The ring D[x±1] arises from D[x] by
localizing at the multiplicative set generated by the prime elements x1, . . . , xn. Hence,
the prime divisors of D[x±1] correspond exactly to the prime divisors of D[x], with the
n prime divisors (x1), . . . , (xn) omitted. In addition, there is a canonical isomorphism
Cl(D[x]) ∼= Cl(D[x±1]) (Theorem 2.6). Therefore, properties (C2), (C3), and (C4) for
D[x±1] follow immediately from the corresponding properties for D[x]. □

4.2.1. Algorithms for (Laurent) Polynomial Rings. To summarize the algorithmic content
of the proofs of Proposition 4.11 and Corollary 4.12, we explicitly state the algorithms to
compute the divisor of an element of K(x) with respect to D[x] (Algorithm 3), as well
as the class of a prime divisor of D[x] as an element of Cl(D) (Algorithm 4). For D[x±1],
the functions LPDivisor and LPCLassOfPrimeDivisor are completely analogous,
with the prime divisors corresponding to monomials omitted, hence we do not state them.

Keep in mind that prime divisors P of D[x] are of two types:
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• if P is extended from D, then it is represented by the prime divisor P ∩ D of D

(which has a computational representation by (C2) of D);

• if P localizes to K[x], then it is represented by an irreducible polynomial p ∈ K[x].

Algorithm 3 Compute a divisor with respect to D[x]
function PolyRingDivisor(0 ̸= f/g ∈ K(x))

if g ̸= 1 then
return PolyRingDivisor(f) − PolyRingDivisor(g)

else
λpe1

1 · · · per
r ← factor f in K[x] ▷ using the splitting algorithm of K

f = ∑
m amxm with am ∈ K

C ← min{ divD(am) : m } ▷ component-wise minimum, using (C3) of D
return C +∑r

i=1 ei(piK[x] ∩D[x])

Algorithm 4 Compute the class of a prime divisor of D[x]
Require: P is a prime divisor of D[x]

function PolyRingClassOfPrimeDivisor(P )
if P is extended from D then

return [P ∩D] ▷ using (C4) of D
else ▷ P localizes to K[x]

p← irreducible polynomial of K[x] representing P
P + e1P1 + · · ·+ erPr ← PolyRingDivisor(p) ▷ all Pi ̸= P extended from D
return −

∑r
i=1 ei[Pi ∩D] ▷ using (C4) of D

4.3. FLIRs over Computable Krull Domains. To be able to compute in D-FLIRs,
the change of variables between charts need to be given by explicit Laurent polynomials.

Definition 4.13. Let D be a computable domain. A D-FLIR A is explicit if there are
explicitly given l ≥ 0 and Laurent polynomials pij, qij ∈ K[t±1] for i ∈ [1, l] and j ∈ [1, n]
such that

{x, y(1), . . . , y(l)}
is a system of charts for A with

y(i) =
(
pi1(x), . . . , pin(x)

)
and x =

(
qi1(y(i)), . . . , qin(y(i))

)
.

Thus, in an explicit FLIR, we can computationally convert elements from one chart
to any other by simple substitution of Laurent polynomials: the isomorphisms K(x)→
K(y(i)) are explicit.

Generalizing the results on polynomial and Laurent polynomial rings from the previous
subsection, we will prove the following theorem.
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Theorem 4.14. An explicit FLIR over a computable Krull domain with splitting algorithm
is a computable Krull domain with splitting algorithm.

We split the proof into several lemmas. First we need a way to represent the prime
divisors of A. Since D[x±1] = A[x−1] is the localization of A at the multiplicative set
generated by x1, . . . , xn, the only prime divisors of A that do not extend to D[x±1] are
the finitely many prime divisors P with x1 · · ·xn ∈ P . However, each such P extends
non-trivially to some D[y(i)±1] (Lemma 3.2).

The following lemma shows that we can compute the prime divisors over x1 · · ·xn

without repetition: when considering the chart y(i), we can detect and discard all those
prime divisors over x1 · · ·xn that show up in some chart y(j) with j < i.

Lemma 4.15. For each i ∈ [1, l], it is possible to compute si ≥ 0 and prime divisors Qi1,
. . . , Qisi of D[y(i)±1], such that this is precisely the set of prime divisors Q of D[y(i)±1]
with

x1 · · ·xn ∈ Q and y(j)1 · · ·y(j)n ∈ Q for all j < i.

Proof. Since A is an explicit FLIR, we can express x1 · · ·xn = f(y(i)) with f ∈ K[t±1],
and similarly y(j)1 · · ·y(j)n = gj(y(i)) with gj ∈ K[t±1] for all j ∈ [1, l] with j < i.

Now compute divD[y(i)±1](f) and divD[y(i)±1](gj) using Corollary 4.12. The desired set
{Qi1, . . . , Qisi} consists of the prime divisors that appear in the support of divD[y(i)±1](f)
and also all the supports of divD[y(i)±1](gj) for j < i. □

Thus, we can represent the set of prime divisors of A as a disjoint union

X(A) =
{

Q ∩A : Q ∈ X(D[x±1])
}
∪

l⋃
i=1

{
Qi1 ∩A, . . . , Qisi ∩A

}
.

Since we already know how to work with divisors in each of the localizations D[x±1],
D[y(1)±1], . . . , D[y(l)±1] of A, this gives us a computably enumerable representation of
the prime divisors of A.

Lemma 4.16. For each a ∈ K(x), it is possible to compute the divisor divA(a).

Proof. It suffices to compute divD[x±1](a) and divD[y(i)±1](a) for all i ∈ [1, l], and to then
combine the resulting information. This is possible by Corollary 4.12. □

Lemma 4.17. The class group Cl(A) and the homomorphism Div(A) → Cl(A) are
computable.

Proof. By Theorem 3.7, the class group of A is Cl(D)⊕H, with

H ∼= Zr/⟨c1, . . . , cn⟩ and divA(xi) =
r∑

j=1
cijPj ,
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where P1, . . . , Pr ∈ X(A) are the prime divisors of A containing x1 · · ·xn, and ci =
(ci1, . . . , cir) ∈ Zr for all i ∈ [1, n]. Here Cl(D) ∼= Cl(D[x±1]) via the extension map
[I] 7→

[
ID[x±1]

]
.

By Corollary 4.12, the homomorphism Div(D[x±1]) → Cl(D) is computable. Since
D[x±1] = A[x−1] is the localization of A at the multiplicative set generated by x1, . . . , xn,
the map Div(A)→ Div(D[x±1]) is given by omitting the prime divisors P1, . . . , Pr, and
is therefore computable as well. Thus, the map Div(A)→ Cl(D) is computable.

We can compute divA(xi), and hence the vectors ci, by Lemma 4.16. Thus, also H

is computable. It remains to show that the map Div(A)→ H is computable. That is,
given a prime divisor P ∈ X(A), we need to show that we can compute its image in H.

Every prime divisor P ∈ X(A) that does not contain x1 · · ·xn extends to a prime
divisor P ′ ∈ X(D[x±1]). Therefore, we have a disjoint union

X(A) = {P1, . . . , Pr} ∪ X0 ∪ X1,

where X0 consists of prime divisors of A that are of the form P0D[x±1] ∩ A for some
P0 ∈ X(D), and where X1 consists of prime divisors of the form pK[x±1] ∩A for some
irreducible polynomial p ∈ K[x±1].

Let P ∈ X(A). If P = Pi, for some i, then there is nothing to do, because our chosen
presentation of H uses [P1], . . . , [Pr] as generators. So without restriction x1 · · ·xn ̸∈ P .

Now suppose P ∈ X1, that is, we have PK[x±1] = pK[x±1] for some irreducible
polynomial p ∈ K[x±1]. The kernel of Div(A)→ Div(K[x±1]) is generated by P1, . . . , Pr

together with X0. Therefore,

divA(p) = P +
r∑

i=1
eiPi + E,

for some ei ∈ Z and a divisor E supported on X0. The coefficients ei are computable
by Lemma 4.16. By Lemma 3.6, the class of E is trivial in H. Thus, we have [P ]H =
−e1[P1]− · · · − er[Pr] in H. Having expressed [P ]H in terms of the generators of H, it is
therefore computable.

Finally, consider P ∈ X0, that is PD[x±1] = P0D[x±1] with P0 = D∩PD[x±1] ∈ X(D).
Note that this P0 is computable from P , because prime divisors on D[x±1] that are
extended from D are in fact simply represented by their corresponding prime divisors
of D. Lemma 4.6 allows us to compute a, b ∈ D such that P0 = min{divD(a), divD(b)}.
The corresponding divisorial fractional ideal of D is then (aD + bD)v, and its extension
to A is (aA + bA)v. Thus, the extension of P0 to A is represented by the divisor
min{divA(a), divA(b)}. Hence,

min{divA(a), divA(b)} = P +
r∑

i=1
eiPi,
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for some ei ∈ Z that are computable by Lemma 4.16. Since the short exact sequence
in Lemma 3.6 is split by the map induced by extension of divisorial ideals from D

to A, the class of min{divA(a), divA(b)} is trivial when projected onto H. We get
[P ]H = −e1[P1]− · · · − er[Pr] in H. □

We can now show that an explicit FLIR A over computable Krull domain D with
splitting algorithm is again a computable Krull domain (with splitting algorithm).

Proof of Theorem 4.14. We have to verify the properties in Definition 4.1 for A. Since A

is given as a subring of D[x±1], property (C1) is clear. Property (C2) follows from our
representation of X(A) as disjoint union of X(D[x±1]) together with an additional finite
set of prime divisors lying over x1 · · ·xn (see the discussion after Lemma 4.15). Now
Lemma 4.16 shows (C3), and Lemma 4.17 shows (C4). Finally, since the field of fractions
of A is K(x), it has a splitting algorithm. □

4.3.1. Algorithms for FLIRs. We again summarize the algorithmic content of Theo-
rem 4.14 in Algorithms 5 and 6. Keep in mind that all but finitely many prime divisors
of A extend to D[x±1], and the remaining prime divisors, which lie over x1 · · ·xn, extend
non-trivially to some D[y(i)±1]. In Lemma 4.15 we have seen that we can enumerate the
prime divisors of the latter type as Qi1 ∩A, . . . , Qisi ∩A in a non-redundant way.

Algorithm 5 Compute the divisor of an element of a FLIR A

function FLIRDivisor(0 ̸= f ∈ K(x))
E ← LPDivisor(f) ▷ divisor of D[x±1]

for all i ∈ [1, l] do
fi ∈ K(y(i))← expression of f in chart y(i)
Ei ← LPDivisor(fi) ▷ divisor of D[y(i)±1]

for all j ∈ [1, si] do
eij ← coefficient of Qij in Ei

E ← E + eij(Qij ∩A)
return E

While we do not prove formal complexity bounds, from the proof of Theorem 4.14
it is clear that the complexity of the algorithms is dominated by the complexity of the
following computations:

(1) given a divisor E of D, to compute a, b ∈ D with min{divD(a), divD(b)} = E;

(2) to factor multivariate polynomials in K[x].

Problem (1) is trivial for fields and Z, and practical algorithms exist for interesting
classes of rings, such as rings of integers of number fields, where this corresponds to the
computation of generators of an ideal.
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Algorithm 6 Compute the class of a prime divisor of a FLIR A in Cl(D)⊕H

Require: P is a prime divisor of A
function FLIRClassOfPrimeDivisor(P )

c1P1 + · · ·+ crPr ← FLIRDivisor(x1 · · ·xn) ▷ using Algorithm 5
if P = Pi for some i then

return (0, [Pi])
else ▷ P extends to D[x±1]

g ← LPCLassOfPrimeDivisor(PD[x±1]) ▷ class in Cl(D) (Algorithm 4)
if P extends to K[x±1] then

p← irreducible polynomial of K[x±1] representing P
P + e1P1 + · · ·+ erPr + E ← FLIRDivisor(p)
return

(
g, −

∑r
i=1 ei[Pi]

)
else ▷ PD[x±1] is extended from D

P0 ← PD[x±1] ∩D
Compute a, b ∈ D with P0 = min{divD(a), divD(b)} ▷ using Lemma 4.6
P +∑r

i=1 eiPi ← min{divA(a), divA(b)} ▷ using Algorithm 5
return

(
g, −

∑r
i=1 ei[Pi]

)
Problem (2) is well-studied in computer algebra, and practical algorithms exist for a

variety of fields, such as number fields and finite fields, as well as Z [Kal92; Kal03].
Finally, while Theorem 4.14 shows that A is a computable Krull domain, in practice,

an important piece is missing: to compute factorizations in A, we also need to compute
generators of principal divisors of A (not just of D). While this is always possible in
principle (Lemma 4.6), the enumeration procedure is wholly impractical.

Algorithm 7 gives a more practical way, under the reasonable assumption that practical
algorithms are available for Problems (1) and (2) above (in fact, instead of (1), only the
computation of a generator of a principal divisor of D is needed).

Algorithm 7 Compute a generator of a principal divisor E in a FLIR A

Require: E is a principal divisor of A
function FLIRPrincipalGenerator(E ∈ Div(A))

E′ ← extension of E to Div(D[x±1])
E′′ ← extension of E′ to Div(K[x±1])
E′′ = e1[p1] + · · ·+ el[pl] with pairwise non-associated prime elements pi ∈ K[x±1]
f ← pe1

1 · · · p
el
l

Compute d ∈ D with divD[x±1](d) = E′ − divD[x±1](f).
Solve the linear system divA(df) +∑n

i=1 mi divA(xi) = E for m = (m1, . . . , mn).
return dxmf

Proof of Correctness of Algorithm 7. First note that E′ is computed from E by dropping
the prime divisors P1, . . . , Pr lying over x1 · · ·xn. Similarly, the divisor E′′ is computed
from E′ by dropping the prime divisors of D[x±1] extended from D, which is trivial
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to do, given how we represent prime divisors. Now E′′ has the stated representation,
because prime divisors of K[x±1] are represented by irreducible polynomials. Thus, we
can compute f .

Now E′ − divD[x±1](f) ∈ Div(D[x±1]) only has nonzero coefficients at prime divisors
extended from D. Since E′ is in addition principal (because E is), by assumption on D,
we can compute d.

Finally, divA(df) only differs from E at the prime divisors P1, . . . , Pr lying over
x1 · · ·xn. Since E is principal, this means that there exists some m ∈ Zn such that
divA(dxmf) = E. This is a linear equation in m over Z and can therefore be solved to
find m. □

Finally, Theorem 3.7 shows Cl(A) ∼= Cl(D)⊕H, with H explicitly given as Coker(x 7→
xC) for a matrix C ∈ Zn×r. Algorithm 8 computes this matrix C. It is then easy
to deduce further properties of H, for instance, the invariant factor decomposition is
computable using the Smith normal form.

Algorithm 8 Compute a presentation of Cl(A)/ Cl(D) for a FLIR A

function FLIRClassGroupPresentation(A)
Ei ← FLIRDivisor(xi) for all i ∈ [1, n] ▷ using Algorithm 5
Ei = ∑r

j=1 cijPj .
return C = (cij)

5. Laurent Intersection Rings and Cluster Algebras

In this section we observe that locally acyclic cluster algebras are FLIRs (Section 5.1).
An interesting subclass of locally acyclic cluster algebras are the Banff cluster algebras.
We show that these are explicit FLIRs, and hence that class groups and factorizations can
be computed algorithmically (Section 5.2). We also show how to compute presentations
of Banff cluster algebras (Section 5.3) and provide a family of examples (Section 5.4).

By definition, every upper cluster algebra is a LIR. This gives a characterization of
upper cluster algebras that are Krull domains.

Corollary 5.1. Let D be a Krull domain, let P be a semifield, and let U be an upper
cluster algebra over D with coefficients in P. Then U is a Krull domain if and only if it
is a finite intersection of Laurent polynomial rings arising from clusters.

Proof. Since D is a Krull domain and P is a torsion-free abelian group, the group algebra
DP is a Krull domain [Gil84, Theorem 15.4]. The claim follows from Lemma 3.2. □

Remark 5.2. (1) Full rank upper cluster algebras (with ground ring D = Z) are a finite
intersection of Laurent polynomial rings by the Starfish Lemma [BFZ05, Corollary
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1.9]. Since the intersection is obtained by mutating once in each direction from the
initial seed, this is explicit, and hence these algebras are explicit FLIRs.

(2) There are Krull (upper) cluster algebras that do not have full rank (e.g., the A3-
cluster algebra) and for which the Starfish Lemma fails [Pom25, Examples 2.12].
Corollary 5.1 implies that these cluster algebras are nevertheless a finite intersection
of Laurent polynomial rings arising from clusters.

(3) Generalized upper cluster algebras [Pom26, Definition 2.7] are LIRs. Hence, if they
are Krull domains, they are FLIRs. The same is true for upper Laurent phenomenon
algebras [Pom26, Definition 5.10]. The factorization theory of these algebras is
studied in [Pom26]. It is possible to view these results through the lens of LIRs,
however this would not add anything substantial new, since the arguments would be
similar to the existing ones.

(4) Let A be a cluster algebra or upper cluster algebra. A prime ideal P ∈ Spec(A)
is a deep point if x1 · · ·xn ∈ P for each cluster x = (x1, . . . , xn). The ideal of A

generated by {x1 · · ·xn : (x1, . . . , xn) is a cluster } is the deep ideal, and the set of
all deep points is the deep locus of A, see [BM25] and [Cas+24, Section 3] for detailed
discussions. Localizations of Krull domains at a prime ideal of height one are DVRs,
and therefore regular. Hence, the deep ideal of an (upper) cluster algebra that is a
Krull domain has height at least two. Stated in geometric terms, the deep locus has
codimension at least 2 in the affine scheme Spec(A).

(5) If an (upper) cluster algebra is a Krull domain, then the ground ring D must a Krull
domain. Indeed, if x is a cluster, then DP[x±1] is a localization of A, hence a Krull
domain. Therefore, also D is a Krull domain [Gil84, Theorem 15.1]. This shows that
D must necessarily be a Krull domain in Corollary 5.1.

The main known examples of Krull upper cluster algebras are full rank upper cluster
algebras and locally acyclic cluster algebras. Since the factorization theory of full rank
upper cluster algebras is already well understood [CKQ23; Pom25; Pom26], we focus on
the locally acyclic case, even though the approach via FLIRs also easily applies to the
full rank case by the Starfish Lemma.

5.1. Locally Acyclic Cluster Algebras as FLIRs. The next two results are minor
variations of results of Muller [Mul14], stated in the language of FLIRs. Since we need
the slightly more explicit statement of Lemma 5.3 and, using the machinery of iterated
FLIRs, the proofs are short, we reprove them.

Lemma 5.3 (essentially [Mul14, Proposition 3]). Let A be an isolated cluster algebra
over a domain D with coefficients in P. If x is a cluster of A with exchange polynomials



FACTORIALITY AND CLASS GROUPS OF UPPER CLUSTER ALGEBRAS AND FLIRS 33

fi, then A is a DP-FLIR with system of charts{
(y1, . . . , yn) : yi ∈ {xi, fi/xi} for i ∈ [1, n]

}
Additionally, if D and P are computable and x is explicitly given, then A is an explicit
DP-FLIR.

Proof. Since mutations in different directions commute for an isolated cluster algebra,
the only cluster variables are x1, . . . , xn and x′

1, . . . , x′
n, with xix

′
i = fi ∈ DP for all

i ∈ [1, n]. Therefore,

A = DP[x1, x′
1, . . . , xn, x′

n] = DP[x1, f1/x1][x2, f2/x2] · · · [xn, fn/xn].

Thus, the algebra A is an iterated FLIR, and Corollary 3.12 shows that A is a DP-FLIR
with the stated system of charts. □

Theorem 5.4 (essentially [Mul14, Theorem 2]). Every locally acyclic cluster algebra A

over a domain D with coefficient semifield P is a DP-FLIR. In particular, if D is Krull
domain, then so is A.

Proof. If A is a locally acyclic cluster algebra, then it has a cluster cover by isolated cluster
localizations A1, . . . , Al. Each such Ai is a freezing of A, and hence a cluster algebra
with coefficients in Pi for a suitable semifield Pi (see Section 2.3.3). Lemma 5.3 shows
that Ai is a DPi-FLIR. Since DPi is a Laurent polynomial ring over DP, Corollary 3.13
implies that Ai is also a DP-FLIR. Taking the union of the systems of charts of A1,
. . . , Al gives a system of charts for A, so also A is a DP-FLIR.

Since D is a Krull domain and P is a torsion-free abelian group, the group algebra DP
is a Krull domain [Gil84, Theorem 15.4]. Proposition 3.4 then shows that A is a Krull
domain. □

Remark 5.5. As in Muller’s original “A = U” Theorem [Mul14, Theorem 2] for lo-
cally acyclic cluster algebras, of course Spec(A) is covered by the spectra of Spec(A1),
. . . , Spec(Al). The claim in Theorem 5.4 is weaker, in that A is an intersection of Laurent
polynomial rings, but some prime ideals of height at least two may become trivial in all
Laurent polynomial rings (see Remark 2.15).

5.2. The Banff Algorithm and Explicit FLIRs. Muller introduced a semialgorithm,
known as the Banff algorithm, that takes as input a seed (x, y, B) and, if it terminates,
produces a cluster cover of the associated cluster algebra A = A(x, y, B) by isolated
cluster localizations [Mul13, §5].

Termination of the Banff algorithm therefore implies that A is locally acyclic. We
straightforwardly adapt the Banff algorithm to show that A is an explicit FLIR (Defini-
tion 4.13). The Banff algorithm is based on covering pairs and Theorem 5.7.
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Definition 5.6. Let (x, y, B) be a seed with exchange matrix B = (bij).

(1) A pair (i, j) of indices is a covering pair if bij > 0, but there does not exist an infinite
sequence (ik)k∈Z of indices such that bikik+1 > 0 for all k ∈ Z and (i, j) = (i1, i2).

(2) A pair (i, j) is a terminal covering pair if bij > 0 and bki ≤ 0 for all k or bjk ≤ 0 for
all k.

The notion of covering pairs is generalized from the corresponding notion for quivers.
To understand it better, consider the directed graph with set of vertices [1, n] and with
an arrow from i to j whenever bij > 0.7 Then a covering pair is an arrow i→ j that is
not contained in any bi-infinite directed path. A terminal covering pair is an arrow i→ j

with either i a source or j a sink.
If there exists a covering pair i→ j, then there also exists a terminal covering pair as

one can simply walk along a path containing i→ j until reaching either a source (going
backward from i) or a sink (going forward from j) [Mul13, Proposition 8.1]. Terminal
covering pairs will sometimes be easier to deal with in algorithmic considerations.

Theorem 5.7 (Muller). Let D be a domain and P a semifield. Let A = A(x, y, B; D) be
a cluster algebra. If there exists a covering pair (i, j), then the following hold.

(1) The spectra Spec(A[x−1
i ]) and Spec(A[x−1

j ]) cover Spec(A).

(2) If the freezings A[x†
i ] and A[x†

j ] are locally acyclic, then they are equal to A[x−1
i ] and

A[x−1
j ], respectively. Thus, they are cluster localizations of A.

Proof. The first claim is [Mul13, Corollary 5.4], and the second claim follows from [Mul14,
Lemma 1]. The arguments go through in our slightly more general setting. □

The idea behind the Banff algorithm is to look for a seed (x̃, ỹ, B̃) mutation-equivalent
to the input (x, y, B) and having a covering pair (i, j), so that Spec(A) is covered by the
spectra of the two localizations of x̃i and x̃j . The procedure is applied recursively to the
two freezings of x̃i and x̃j , continuing until one reaches an isolated (or acyclic) cluster
algebra. If this recursive process terminates after finitely many steps, then the cluster
algebra A is said to be Banff. In this case the freezings are indeed cluster localizations,
and we obtain a cluster cover of A by isolated cluster localizations.

The Banff algorithm was introduced in [Mul13, §5]. Additional descriptions can be
found in [MS16; BMS19].

Theorem 5.8. If D is a computable Krull domain and P is a computable semifield,
then every Banff cluster algebra with ground ring D and coefficients in P is an explicit
DP-FLIR.
7This makes sense because B is skew-symmetrizable, so bij > 0 if and only if bji < 0.
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Proof. Under the stated assumptions on D and P, the Banff algorithm produces an
explicit cluster cover of A by isolated cluster localizations Ai. Lemma 5.3 shows that
each Ai is an explicit DP-FLIR. The union of charts is an explicit system of charts for A

(as in the proof of Theorem 5.4). □

Pseudocode for the Banff algorithm to compute a system of charts for a Banff cluster
algebra is given in Algorithm 9. Once we have a system of charts, the results of Section 4
allow us to compute the class group and factorizations of elements in Banff cluster
algebras.

Algorithm 9 Compute a system of charts for a Banff cluster algebra.
Require: A is a Banff cluster algebra with initial seed (x, y, B).
Ensure: The output is a system of DP-charts for A.

function Charts(x, y, B)
if B = 0 then ▷ isolated case

m← rank of (x, y, B)
for all i ∈ [1, m] do

fi ← yi
yi⊕1

∏
bki>0 xbki

k + 1
yi⊕1

∏
bki<0 x−bki

k

S ← ∅
for all I ⊆ [1, m] do

xI ← (fi/xi, xj : i ∈ I, j /∈ I) ▷ as in Theorem 5.4
S ← S ∪ {xI}

return S
else

for all seeds (x̃, ỹ, B̃) obtained by mutating (x, y, B) do
(i, j)← FindCoveringPair(B̃)
if (i, j) exists then

(x†, y†, B†)← freezing of (x̃, ỹ, B̃) at i

(x‡, y‡, B‡)← freezing of (x̃, ỹ, B̃) at j
S† ← Charts(x†, y†, B†) ▷ DP†-charts
S‡ ← Charts(x‡, y‡, B‡) ▷ DP‡-charts
S†, S‡ ← extend S†, S‡ to DP-charts ▷ using Corollary 3.13
return S† ∪ S‡

Corollary 5.9. Let D be a computable Krull domain with splitting algorithm, let P be a
computable semifield, and let A be a Banff cluster algebra over D with coefficients in P.
Let K be the field of fractions of DP. Then there are algorithms to compute:

(1) a system of charts for A;

(2) the class group Cl(A) of A;

(3) for every nonzero element f ∈ A, all its factorizations into atoms (up to order and
associativity);
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(4) for every nonzero element f ∈ K(x), its divisor in Div(A) as well as the class of its
divisor in Cl(A).

Proof. This follows from Theorems 4.10, 4.14 and 5.8. □

Proof of Theorem 1.1. This is a special case of the previous corollary. Testing for factori-
ality means computing Cl(A) and checking whether it is trivial. □

5.3. Presentations for Banff Cluster Algebras. Matherne and Muller first gave an
algorithm to compute presentations of totally coprime upper cluster algebras [MM15]. In
this section, we show how to compute a presentation for a Banff cluster algebra A. We
need a standard lemma from commutative algebra.

Lemma 5.10 ([Sta25, Lemma 00EO]). Let R be a ring and let g1, . . . , gl ∈ R be such that
(g1, . . . , gl) = R. Let f : M → N be an R-module homomorphism. If f : M [g−1

i ]→ N [g−1
i ]

is an isomorphism for each i ∈ [1, l], then so is f : M → N .

The Banff algorithm can be adapted to compute generators of the DP-algebra A.

Proposition 5.11. Let D be a computable domain and P a computable semifield. If A

is a Banff cluster algebra over D with coefficients in P, then there exists an algorithm to
compute a set X of cluster variables that generate A as DP-algebra.

Proof. We use the recursive structure of the Banff algorithm. If A is isolated, then an
explicit generating set consisting of cluster variables is given in Lemma 5.3.

Now suppose that A has a covering pair (i, j) in a seed (x, y, B). Without restriction,
we may assume that (i, j) is a terminal covering pair. By recursion, we can assume
that for each k ∈ {i, j}, we have a generating set Xk of A[x−1

k ] as DPk-algebra, where
Pk = P⊕ Trop(xk) and Xk consists of cluster variables of A[x†

k] = A[x−1
k ].

It suffices to show that

X := Xi ∪Xj ∪ {x1, . . . , xn, x′
i, x′

j}

generates A as DP-algebra. Here x = (x1, . . . , xn) and x′
i, x′

j are the cluster variables
obtained by mutating xi, respectively xj , in the seed (x, y, B).

First note X ⊆ A, since every cluster variable of the freezings A[x†
i ] and A[x†

j ] is also
a cluster variable of A. Let A′ be the DP-algebra generated by X. Then A′ ⊆ A, and we
have to show equality.

Since (i, j) is a terminal covering pair, we have bki ≤ 0 for all k or bjk ≤ 0 for all k.
Consider the first case. Now the exchange relation at i reads

xix
′
i = c + xjdm (4)

https://stacks.math.columbia.edu/tag/00EO
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with c, d ∈ P and m a monomial in x1, . . . , xi−1, xi+1, . . . , xn. Noting that c is invertible
in A′ and d, x′

i, m ∈ A′, we deduce (xi, xj)A′ = A′. In the second case, a symmetric
argument again shows (xi, xj)A′ = A′.

The inclusion ι : A′ ↪→ A induces inclusions of the localizations ιk := A′[x−1
k ] ↪→ A[x−1

k ]
for k ∈ {i, j}. By construction, the set ιk(X) generates A[x−1

k ] as DPk-algebra. Since
also xk, x−1

k ∈ im ιk, the homomorphism ιk is surjective. Considering ι as A′-module
homomorphism, Lemma 5.10 yields A′ = A. □

Remark 5.12. The algorithm can be adapted to other locally acyclic cluster algebras,
provided that (i) an explicit cover by isolated (or acyclic) cluster localizations is known,
say A[g−1

1 ], . . . , A[g−1
l ], and (ii) one can assure (g1, . . . , gl)A′ = A′. In the Banff algorithm,

the exchange relation Eq. (4) of a terminal covering pair provided an easy way to guarantee
the second condition by adding x1, . . . , xn and x′

i to the generating set.

Once a set of generators is known, a presentation can be computed using Gröbner
bases. Because of the use of Gröbner bases to compute an elimination ideal, we restrict
to fields, but note that this is also possible over computable PIDs such as Z [BW93,
Chapter 10.1].

Proposition 5.13. Let K be a computable field. Given f1, . . . , fm ∈ K[x±1], one can
compute a presentation for the algebra K[x1, . . . , xn, f1, . . . , fm].

Proof. We introduce auxiliary variables Y1, . . . , Yn to represent the inverses x−1
i . Consider

the polynomial ring

R := K[X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zm].

Define the K-algebra epimorphism ϕ : R→ K[x±1
1 , . . . , x±1

n , f1, . . . , fm] on the genera-
tors by

ϕ(Xi) = xi, ϕ(Yi) = x−1
i , ϕ(Zj) = fj .

Let fj = gj(x)x−ej with gj ∈ K[x] and ej ∈ Zn
≥0 (we assume the fj are represented

in such a way that gj and ej can be determined). Then it is easy to see that

ker ϕ =
(

XiYi − 1, Zj − gj(X)Y ej : i ∈ [1, n], j ∈ [1, m]
)

=: I.

Let J be the elimination ideal of I with respect to the variables Y1, . . . , Yn, namely

J := I ∩K[X1, . . . , Xn, Z1, . . . , Zm].

Then
K[X, Z]/J ∼= ϕ(K[x, z]) = K[x1, . . . , xn, f1, . . . , fm].

Generators for J can be computed by computing a Gröbner basis of I with respect to
a suitable elimination order (see any textbook on Gröbner bases, for instance [CLO15,
Theorem 1.3.2] or [BW93, Chapter 6.2]). This yields the desired presentation. □
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Corollary 5.14. Let A be a Banff cluster algebra over a computable field K. Then there
exists an algorithm to compute a presentation for A.

Proof. Proposition 5.11 allows us to compute a set of cluster variables f1, . . . , fm that
generate A as a K-algebra. Then Proposition 5.13 shows that a presentation for A is
computable. □

Remark 5.15. Over a computable field, in principle, Theorem 3.7 allows a direct compu-
tation of the class group Cl(A) from a presentation. To do so, it suffices to compute the
factorizations

xiA =
∏v

1≤j≤r

P
aij

j =
⋂

1≤j≤r

(P aij

j )v

of the ideals xiA as a divisorial product of height-one prime ideals. Since the ideals Pj

are the associated primes of A/xiA, and the exponents aij are maximal with respect
to P

aij

j ⊆ xiA, these factorizations can be computed using algorithms for primary
decompositions [BW93, Chapter 8]. However, the computation of a presentation and
of primary decompositions both use Gröbner bases, which tend to be computationally
expensive.

Remark 5.16. Let D be a computable domain. In practice, it may be preferable to
compute a presentation over a smaller ring R over which D is an algebra, and then extend
the resulting presentation to D by scalar extension.

More concretely, suppose that AR is a Banff cluster algebra over a computable domain
R, and AD is the corresponding cluster algebra over D with the same initial seed, and D

is an R-algebra. Suppose we have a presentation

0 −→ I −→ R[x] −→ AR −→ 0

of the R-algebra AR. If D is flat over R, then tensoring with D yields

0 −→ I ⊗R D −→ D[x] −→ AR ⊗R D −→ 0.

Flatness of D over R also guarantees

AR ⊗R D ∼= AD,

because AR is finite intersection of Laurent polynomial rings and finite intersections
commute with scalar extension under the flatness hypothesis [Bou72, Proposition I.2.6.6].

If K is a field and D a K-algebra, then D is flat over K. In particular, if D is an
algebra over a field, we can compute a presentation over the prime field and then extend
scalars to D.
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Figure 1. A triangulation of D2,2.

5.4. Some Examples. In this subsection, we discuss a family of cluster algebras arising
from triangulations of punctured discs with at least two marked points on the boundary,
and test our algorithms on some of these algebras. For details on cluster algebras arising
from surfaces, see for instance [FST08].

Let Dm,p be the disc with m ≥ 2 marked points on the boundary and p ≥ 2 punctures.
Any ideal triangulation of Dm,p has n = 3p + m− 3 arcs [FG07, Section 2].

We give an explicit description of an exchange matrix B(m, p) = (bij) associated to a
specific triangulation of Dm,p. The arcs of the triangulation will be labeled by integers
in [1, n]. The matrix entry bij then counts the number of triangles in the triangulation
in which the arcs i and j appear consecutively in clockwise order, minus the number of
triangles in which they appear consecutively in counter-clockwise order.

We start with a triangulation of D2,2 as in Fig. 1. The corresponding exchange matrix
is

B(2, 2) =



0 1 −1 1 0
−1 0 1 0 −1
1 −1 0 −1 1
−1 0 1 0 −1
0 1 −1 1 0


For general (m, p) with m, p ≥ 2 we now recursively first construct a triangulation of

Dm,2 and then one of Dm,p with exchange matrix Bm,p = (bij). In this construction, we
always maintain that the arcs n− 1 and n appear in counter-clockwise order in a triangle
that also contains a boundary segment. The two arcs n− 1 and n will always appear in
a unique triangle, so that

bn,n−1 = 1.

We first describe how to obtain B(m + 1, 2) from B(m, 2). We start with a situation
as in Fig. 2a, where the darker shaded region represents a part of the triangulation that
plays no role in the local construction, and is omitted (by the recursive construction, the
darker region does not contain a triangle with arcs n− 1 and n).

To construct B(m + 1, 2), we add a marked point on the boundary in between the
arcs n− 1 and n, and an arc as in Fig. 2b. To maintain the counter-clockwise order of
the two last arcs, we relabel the previous arc n to n + 1, and label the new arc by n.
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n

n − 1

(a) Triangle in Dm,p with
arcs n− 1 and n.

n + 1

n − 1
n

(b) Adding a marked point
on the boundary.

n

n − 1

n + 1

n + 3

n + 2

(c) Adding a puncture.

Figure 2. Recursive construction of triangulations of Dm+1,p and Dm,p+1
from Dm,p.

We obtain a triangulation of Dm+1,2. Denoting by B′ the (n− 1)× (n− 1) upper left
submatrix of B(m, 2), the new (n + 1)× (n + 1) exchange matrix is

B(m + 1, 2) =



0 b1,n

...
...

0 bn−2,n

−1 0
0 · · · 0 1 0 −1

bn,1 · · · bn,n−2 0 1 0

B′


.

Now we construct B(m, p + 1) from B(m, p). We add a puncture inside the triangle
with arcs n− 1 and n, and we add three arcs as in Fig. 2c, obtaining a triangulation of
Dm,p+1. Denoting by B′ again the (n− 1)× (n− 1) upper left submatrix of B(m, p), the
new (n + 3)× (n + 3) exchange matrix is

B(m, p + 1) =



b1,n 0 0 0
...

...
...

...
bn−2,n 0 0 0

0 −1 1 0
bn,1 · · · bn,n−2 0 0 1 0 −1
0 · · · 0 1 −1 0 −1 1
0 · · · 0 −1 0 1 0 −1
0 · · · 0 0 1 −1 1 0

B′


.

We have thus recursively defined a family of exchange matrices B(m, p) for all integers
m ≥ 2 and p ≥ 2 arising from triangulations of Dm,p. The associated cluster algebras
Am,p := A(x, y, B(m, p); D) are Banff cluster algebras by [Mul13, Theorem 10.6]. If
p = 2, then they are acyclic cluster algebras [FST08, Example 4.3], but if p ≥ 3, then
they are not acyclic, as a consequence of the results in [FST08, §11 and §12].



FACTORIALITY AND CLASS GROUPS OF UPPER CLUSTER ALGEBRAS AND FLIRS 41

5.4.1. Computational Results. We implemented two algorithms in SageMath [Sage25]
to compute the class group of a Banff cluster algebra. The first method, which we will
denote by L, is an implementation of Algorithm 8, while the second method, denoted
by PD first computes a presentation (denoted by P) and then primary decompositions
(denoted by D) as explained in Remark 5.15.

We ran both algorithms on some cluster algebras of type A(x, Bm,p;Q) on Linux-based
workstation, using version 10.7 of SageMath. Table 1 shows the running times. As
expected, method P is significantly slower, whereas L remains viable for significantly
larger cases. For B(2, 2), both methods compute the class group without difficulty.
However, the cluster algebras Am,2 are in fact acyclic, so that, given a better choice of
initial seed, the result is immediate from [GELS19].

For p ≥ 3, we only managed to compute a presentation for the smallest cases B(2, 3)
and B(3, 3) in less than one hour each. Even in these cases, it was not feasible to
determine the rank of the class group with D, since the computation of the primary
decomposition exceeded the available time and memory resources. On the other hand,
method L performed much better, computing the rank of the class group for both B(2, 3)
and B(3, 3) in a few seconds. For all remaining cases listed in Table 1, method PD
failed already at the level of computing a presentation. This is presumably related to
the growth of the number of generators in the presentation, making the Gröbner basis
computations computationally prohibitive.

In contrast, method L remains applicable to substantially larger examples. Although
its running time also increases with the size of the input, it avoids the need for Gröbner
basis and is therefore more scalable in practice.

Finally, we present some examples of non-unique factorizations which were computed
with the methods developed in this paper.

Examples 5.17. (i) Consider the cluster algebra A = A(x, B;Q(i)) over Q(i) associated
to the matrix

B =



0 0 0 2 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 0 0 0
−2 1 0 0 0 1 −1 0
0 −1 1 0 0 0 1 −1
0 0 0 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 0 0 0


.

The pair (3, 5) is a terminal covering pair for B. It is easy to check that freezing at
x5, we get an acyclic cluster algebra, and freezing at x3, we obtain an acyclic cluster
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B(2, 2) B(2, 3) B(3, 3) B(4, 3) B(3, 4) B(4, 4) B(5, 4)
rank 11 2 2 2 3 3 3
vars 5 8 9 10 12 13 14
gens 5 18 20 24 41 45 49
charts 16 10 11 11 14 15 16
L 0.8s 2.4s 3.8s 6.3s 1m45s 4m47s 16m20s
P 0.1s 4m55s 42m30s ∗ ∗ ∗ ∗
PD 2.0s ∗ ∗ – – – –

Table 1. Running times of two methods for computing the divisor
class group of cluster algebras, discussed in Section 5.4.1. Rank is the
rank of the class group (which is isomorphic to Zr for some r), vars is
the number of cluster variables in a given seed, gens is the number of
generators in the presentation used by method P (that is, the parameter
m in Proposition 5.13), and charts is the number of FLIR charts used by
method LP. An asterisk indicates that the computation exceeded the time
limit of one hour, while a dash indicates that step D was not attempted
as already P timed out.

algebra after mutating at 5. Therefore, the algebra A is a Banff cluster algebra. The
element

f = x3
4x5 + x2

4x2
5 + x3

4 + x2
4x5 + x4x5 + x2

5 + x4 + x5
x2

has four distinct factorizations in A:

f = (x1) · (x3) ·
(

x2
4 + 1
x1

)
·
(

x4 + x5
x2

)
·
(

x5 + 1
x3

)

= (x1) ·
(

x2
4 + 1
x1

)
·
(

x4 + x5
x2

)
· (x8) ·

(
x5 + 1

x8

)
= (x3) · (x4 + i) · (x4 − i) ·

(
x5 + 1

x3

)
·
(

x4 + x5
x2

)
= (x8) ·

(
x4 + x5

x2

)
·
(

x5 + 1
x8

)
· (x4 + i) · (x4 − i).

(ii) Let A = A(x, B(2, 2);Q) be the cluster algebra associated to the triangulation of
D2,2 in Fig. 1. The class group of A is Z11. Let y = µ3 ◦ µ4 ◦ µ5 ◦ µ1 ◦ µ2 ◦ µ3(x)
and let z = µ4 ◦ µ3 ◦ µ5 ◦ µ2 ◦ µ1(y). Then there are 20 non-associated atoms of A

that divide f , and f has 29 distinct factorizations in A. The length set of f is

L(f) := {3, 4},

where the length of a factorization is the number of atoms in it (counted with
repetition). As an example, here are two factorizations of f of lengths 4 and 3,



FACTORIALITY AND CLASS GROUPS OF UPPER CLUSTER ALGEBRAS AND FLIRS 43

respectively:

f =
(

x2x4 + x3

x1

)
·
(

x2
2x2

4 + 2x1x2x4x5 + x2
1x2

5 + 2x2x3x4 + 2x1x3x5 + x32

x1x2x3x4x5

)
·

·
(

x3
2x3

4 + x1x2
2x2

4x5 + 3x2
2x3x2

4 + 3x1x2x3x4x5 + x2
1x3x2

5 + 3x2x2
3x4 + 2x1x2

3x5 + x3
3

x2
1x2x3x4x5

)
· (x1)

=
(

x2x4 + x3

x1

)
· (x3) ·

((
x−2

1 x−2
2 x−3

3 x−2
4 x−2

5
)(

x5
2x5

4 + 3x1x4
2x4

4x5 + 3x2
1x3

2x3
4x2

5+

+ x3
1x2

2x2
4x3

5 + 5x4
2x3x4

4 + 13x1x3
2x3x3

4x5 + 12x2
1x2

2x3x2
4x2

5 + 5x3
1x2x3x4x3

5 + x4
1x3x4

5+

+ 10x3
2x2

3x3
4 + 21x1x2

2x2
3x2

4x5 + 15x2
1x2x2

3x4x2
5 + 4x3

1x2
3x3

5 + 10x2
2x3

3x2
4+

+ 15x1x2x3
3x4x5 + 6x2

1x3
3x2

5 + 5x2x4
3x4 + 4x1x4

3x5 + x5
3
))

.

6. Distribution of Prime Divisors in FLIRs

In this section we prove Theorem 3.9. The proof is an adaptation of the argument
for cluster algebras over fields [GELS19, Theorem 3.2] and of Fadinger and Windisch’s
proof of an analogous statement for Krull monoid algebras [FW22]. In particular, we use
lemmas of Chang ([Cha11, Theorem 3(ii)] or [FW22, Lemma 3.2]) and an extension of a
lemma of Fadinger and Windisch [FW22, Lemma 3.3].

The following is an adaptation of [FW22, Lemma 3.3].

Lemma 6.1. Let D be a Krull domain with field of fractions K and |X(D)| =∞. Let P1,
. . . , Pt ∈ X(D) be pairwise distinct. If 0 ̸= I ⊆ D is a divisorial ideal of D, then there
exist infinitely many P ∈ X(D) with the following property: there exist a, b ∈ K× such
that I−1 = (a, b)v, such that vPi(a) = 0 for all i ∈ [1, t], and such that vP (a) = vP (b) + 1.

Proof. By the Approximation Theorem for Krull domains [Fos73, Theorem 5.8], there
exists b ∈ K× such that vP (b) = −vP (I) for all P ∈ X(D) with P ∈ {P1, . . . , Pt}
or vP (I) ̸= 0, and vQ(b) ≥ 0 for all remaining Q ∈ X(D). By the same theorem,
there exists a ∈ K× such that vPi(a) = 0 for all i ∈ [1, t], such that vQ(a) = −vQ(I)
whenever vQ(b) ̸= vQ(I), and such that vP (a) = vP (b) + 1 for some fixed choice P of the
remaining primes, and vQ(a) ≥ 0 for all other Q ∈ X(D). Comparing valuations shows
I−1 = (a, b)v. □

Lemma 6.2. Let A be a FLIR in n ≥ 1 variables over a Krull domain D with field of
fractions K. Let x = (x1, . . . , xn) be a chart of A, and let P1, . . . , Pt be the height-one
prime ideals of A over x1 · · ·xn. Then, for every divisorial ideal 0 ̸= I ⊆ D and all e1,
. . . , et ∈ Z, there exist min{|D|,ℵ0} pairwise non-associated prime elements g ∈ K[x±1]
such that[

gK[x±1] ∩D[x±1]
]

=
[
ID[x±1]

]
and vPi(g) = ei for all i ∈ [1, t],

where the first equality is in Cl(D[x±1]) ∼= Cl(D).
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Proof. We consider several (overlapping) cases. Generally speaking, since we aim to
produce many prime ideals, the cases when n = 1 or when D does not have infinitely
many height-one primes are the harder ones.

Case 1: n = 1 and D is factorial. Either A = D[x] or A = D[x±1] ∩ D[(a/x)±1]
for some nonzero nonunit a ∈ D by Proposition 3.14. In any case, the ring D[x±1] is
factorial, so the first property is always vacuously satisfied.

If A = D[x] or A = D[x±1] (corresponding to a ∈ D×), then the second property
follows easily from the fact that D[x] contains min{|D|,ℵ0} many prime elements. (Note
t = 1 and P1 = (x) if A = D[x], so that xe1g for any non-monomial irreducible g ∈ K[x]
satisfies the property, and t = 0 if A = D[x±1]).

So suppose A = D[x±1] ∩D[(a/x)±1] with 0 ̸= a ∈ D \D×. Since every P ∈ X(A)
extends non-trivially to one of the two localizations D[x±1] or D[(a/x)±1], every height-
one prime ideal over x extends non-trivially to D[(a/x)±1]. There, we have

x = a(x/a) = πr1
1 · · ·π

rt
t (x/a),

with a = πr1
1 · · ·π

rt
t a prime factorization of a in D and x/a a unit. Since each πi is

prime in D[(a/x)±1], the ideals Pi = πiD[(a/x)±1] ∩ A for i ∈ [1, t] are precisely the
height-one prime ideals of A over x. Therefore, we have vPi(πi) = 1 and vPj (πi) = 0 for
all i ̸= j ∈ [1, t]. Hence, we have vPi |D = vπi .

Now let b = πe1
1 · · ·π

et
t ∈ K×. For sufficiently large N , and arbitrary c ∈ D, the

polynomial
gc := πe1−1

1 xN + πe1
1 cxN−1 + b

satisfies vPi(gc) = vPi(b) = vπi(b) = ei for all i ∈ [1, t], since vPi(x) > 0 for all i. Further,
it is irreducible over D(π1) by Eisenstein’s criterion. Hence, it is a prime element of
K[x±1] with the desired valuations at Pi. This settles Case 1.

For the remaining cases, choose M ≥ 0 such that ei ≥ −MvPi(x1 · · ·xn) for all i (this
is possible because vPi(x1 · · ·xn) ≥ 1). Using the Approximation Theorem for Krull
domains, choose f ∈ A such that vPi(f) = ei +MvPi(x1 · · ·xn) ≥ 0 for all i ∈ [1, t]. Write

f =
s∑

i=r

fix
i
1 ∈ D[x±1],

with fi ∈ D[x±1
2 , . . . , x±1

n ] and fr, fs ̸= 0.

Case 2: n ≥ 2 and D is factorial. Then D[x±1] is factorial, so that the first property
is always vacuously satisfied. Let p ∈ K[x±1

2 , . . . , x±1
n ] be a prime element that does not

divide any of the fi and such that vPi(p) = 0 for all i. There exist at least min{|K|,ℵ0}
such prime elements, because n ≥ 2. Define

gp := (x1 · · ·xn)N + fp(x1 · · ·xn)−M ,
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with N sufficiently large so that vPi(gp) = vPi(fp(x1 · · ·xn)−M ) = ei. Viewed as a
Laurent polynomial in x1 over K[x±1

2 , . . . , x±1
n ], the element gp is irreducible by Eisen-

stein’s criterion. Since its leading term is not divisible by a non-constant element of
K[x±1

2 , . . . , x±1
n ], the Laurent polynomial gp is a prime element of K[x±1] with the desired

properties. Different choices of p lead to non-associated prime elements gp.

Since a Krull domain with |X(D)| < ∞ is always factorial (in fact, it is a semilocal
PID [GHK06, Proposition 2.10.7.4]), it suffices to consider the following remaining case.

Case 3: n ≥ 1 and |X(D)| = ∞. Lemma 6.1 shows that there exist a, b ∈ K× and
P ∈ X(D) such that I−1 = (a, b)v, that vP (a) = vP (b) + 1, and that vPi(a) = 0 for all
i ∈ [1, t] (we use that Pi ∩ D has height at most one, see Lemma 3.5). In fact, there
are infinitely many choices for P , which allows us to also guarantee vP (fi) = 0 for all
nonzero coefficients of the fi.

Define
gp := b(x1 · · ·xn)N + a(x1 · · ·xn)N−1 + af(x1 · · ·xn)−M ,

with N chosen sufficiently large so that vPi(gp) = vPi(af(x1 · · ·xn)−M ) = ei. Applying
Eisenstein’s criterion in the localization DP , it follows that gp ∈ DP [x±1] is irreducible.
Thus, the element gp is a prime element in K[x±1].

Finally, by [FW22, Lemma 3.2], and noting that all coefficients of gp are multiples of a

or b, we have
gpK[x±1] ∩D[x±1] = gp(a, b)−1[x±1] = gpID[x±1]. □

Proof of Theorem 3.9. Fix a chart x ∈ S and let P1, . . . , Pt be the height-one prime
ideals of A over x1 · · ·xn. By Lemma 3.6,

Cl(A) ∼= Cl(D)⊕H,

with H generated by [P1], . . . , [Pt]. Let π : Cl(A)→ H be the projection map.
Let I ⊆ D be a nonzero divisorial ideal and let e1, . . . , et ∈ Z. It suffices to show:

there exist min{|D|,ℵ0} many pairwise distinct Q ∈ X(A) such that[
QD[x±1]

]
=
[
ID[x±1]

]
and π([Q]) = e1π([P1]) + · · ·+ etπ([Pt]).

Lemma 6.2 shows that there exist min{|D|,ℵ0} many pairwise non-associated prime
elements g ∈ K[x±1] such that[

gK[x±1] ∩D[x±1]
]

=
[
ID[x±1]

]
and vPi(g) = −ei.

For each such g, the ideal Qg := gK[x±1] ∩ A is a height-one prime ideal of A with[
QgD[x±1]

]
=
[
ID[x±1]

]
.
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By considering the localization K[x±1] of A, we obtain

gA = Qg ·v P −e1
1 · · · ·v P −et

t ·v P ′
1 · · ·v P ′

s,

where P ′
1, . . . , P ′

s ∈ X(A) are such that x1 · · ·xn ̸∈ P ′
i and D∩P ′

i ̸= 0 for all i ∈ [1, s]. Thus,
each P ′

i D[x±1] is extended from D. The splitting of the short exact sequence in Lemma 3.6
shows π([P ′

i ]) = 0 for i ∈ [1, s]. We conclude π([Qg]) = e1π([P1]) + · · ·+ etπ([Pt]). □

7. Final Observations

We make some final observations: we discuss the relation between the Picard group
and the class group, revisit the acyclic case to simplify the argument of [GELS19], and
close with some open questions.

7.1. Picard Groups. The Picard group Pic(A) of a domain A is the group of all
invertible fractional ideals of A modulo the subgroup of principal fractional ideals. For
any Krull domain A, there is a canonical monomorphism Pic(A) → Cl(A). For a
noetherian integrally closed domain, this map is bijective if and only if A is locally
factorial [Fos73, Corollary 18.5].

Singularities of cluster algebras have been studied, and even classified for cluster
algebras of finite type [Ben+15; Ben+23; Ben+25]. For instance, the A3-cluster algebra
over a field of characteristic zero has a unique singular maximal ideal. While even a
non-regular local ring may be factorial, this is not the case here: the following shows that
Pic(A) differs from Cl(A) for the A3-cluster algebra.

Proposition 7.1. If K is a field with char K = 0 and A is the A3-cluster algebra over
K, then Pic(A) = 0 and Cl(A) ∼= Z.

Proof. By [GELS19, Corollary 5.16], we have Cl(A) ∼= Z.
By [Ben+23, Lemma 4.1], there is a presentation

A ∼= D[Z1, Z2, Z3, Z4]/(Z1Z2Z3Z4 − Z1Z2 − Z1Z4 − Z3Z4).

Since char K ̸= 2, there is a unique singularity at the maximal ideal M corresponding to
the origin [Ben+23, Theorem A(1)].

By [Fos73, Corollary 18.6], there is a short exact sequence

0→ Pic(A)→ Cl(A)→ Cl(AM )→ 0.

The claim follows if we show that Cl(A)→ Cl(AM ) is an isomorphism.
The localization AM is isomorphic to the localization of the hypersurface

B := K[X, Y, Z, W ]/(XY − ZW )

at its singular maximal ideal M ′ = (x, y, z, w) [Ben+23, Proposition 3.8].
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An adaptation of a standard argument (see [Har77, Exercise II.6.5] or [Fos73, Proposi-
tion 14.8]) to the local case shows Cl(BM ′) ∼= Z: localizing BM ′ further, at the height-one
prime ideal P := (x, z)BM ′ , yields B(x,z) ∼= K[X, Y, W ](X), which is factorial. By Na-
gata’s Theorem (Theorem 2.6), the class group Cl(BM ′) is generated by the class of
P . It suffices to show that no symbolic power P (n) with n ≥ 1 is principal. Suppose
P (n) = fBM ′ for some f ∈ BM ′ . Note xn, zn ∈ P (n). Since

BM ′/(y, w)BM ′ ∼= K[X, Z](X,Z),

we see that (xn, zn) is not contained in any height-one prime ideal of BM ′/(y, w)BM ′ ,
contradicting that it is contained in fBM ′/(y, w)BM ′ . □

7.2. The Acyclic Case Revisited. For a cluster algebra A with acyclic seed (x, y, B),
the height-one prime ideals over x1 · · ·xn were described in [GELS19, Lemma 4.5, Propo-
sition 4.7, and Theorem 4.9]. Since the remaining height-one prime ideals are in bijection
with those of A[x−1] = DP[x±1], this gives a complete description of X(A) in the acyclic
case.

The argument in [GELS19] is based on a rather technical induction argument and
knowledge of a presentation of an acyclic cluster algebra. Additionally, the determined
generators are only proven to generate the ideals as divisorial ideals, with the question
of generation as ordinary ideals left open [GELS19, Question 4.8]. We clean up this
situation in the following, by giving a more natural proof based on iterated FLIRs. While
the arguments are similar, they make more effective use of cluster localizations to avoid
the technical induction. We also allow the ground ring to be an arbitrary Krull domain.

In this subsection, let A be a cluster algebra with an acyclic seed (x, y, B) over a
Krull domain D. Let f1, . . . , fn be the exchange polynomials associated to the seed. Let
x′

i = fi/xi. We generalize the notion of partners [GELS19, Definition 2.6] to the present
setting.

Definition 7.2. (1) Let P ∈ X(DP[x]). The set of P -partners, denoted by Partner(P ) ⊆
[1, n], consists of all i ∈ [1, n] for which fi ∈ P .

(2) Two indices i, j ∈ [1, n] are partners if they are P -partners for some P ∈ X(DP[x]).

From the definition of exchange polynomials, one sees that an exchange polynomial of
a non-isolated index i is never contained in any height-one prime ideal extended from DP
(Section 2.3.1). Hence, the ideal P in the previous definition corresponds to an irreducible
polynomial p ∈ K[x] over the field of fractions K of DP. It follows that two indices i, j

are P -partners if and only if p divides both fi and fj in K[x].

Lemma 7.3. If i, j ∈ [1, n] are partners, then bij = bji = 0.
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Proof. In the case of characteristic 0 and geometric coefficients this is [GELS19, Lemma
2.7]. If i is isolated, then bij = 0 for all j by definition. In the non-isolated case, the
argument is based on analyzing the irreducible factors of exchange polynomials, and it
goes through in the general case. □

The following generalizes [GELS19, Lemma 4.5 and Proposition 4.7] and answers
[GELS19, Question 4.8].

Proposition 7.4. Let (x, y, B) be an acyclic seed of a cluster algebra A over a Krull
domain D. For each i ∈ [1, n], the height-one prime ideals of A containing xi are the
ideals of the form

Q = PA +
∑
j∈T

xjA +
∑

j∈Partner(P )\T

x′
jA,

with P ∈ X(DP[x]) containing the exchange polynomial fi and {i} ⊆ T ⊆ Partner(P ).

In particular, there are ∑
P ∈X(DP[x])

fi∈P

2|Partner(P )|−1

height-one prime ideals of A containing xi.
We first deal with FLIRs in one variable, and then with isolated cluster algebras,

by treating them as iterated FLIRs. A height-one prime ideal of a one-variable FLIR
A = D[x, a/x] over a Krull domain D either extends to K[x±1], with K the field of
fractions of D, or intersects D non-trivially in a height-one prime ideal by Lemma 3.5.
The height-one primes of the second type are explicitly described in the following.

Lemma 7.5. Let D be a Krull domain, let 0 ̸= a ∈ D, and let A = D[x, a/x]. Let
P ∈ X(D).

(1) If a ∈ P , then
PA + xA and PA + (a/x)A

are the height-one prime ideals of A over PA.

(2) If a ̸∈ P , then PA is a height-one prime ideal of A.

Proof. We have A = D[x±1]∩D[(a/x)±1] by Proposition 3.14 and every height-one prime
ideal of A extends non-trivially to at least one of the two localizations.

(1) Note that A ∼= D[x, y]/(xy − a) since x and a are coprime in D[x] [Fos73, Lemma
14.1]. Thus,

A/(PA + xA) ∼= D[x, y]/(P, x, xy − a) ∼= D/P [y],
and so PA + xA is a prime ideal of A. Since PA + xA localizes to PD[(a/x)±1] +
xD[(a/x)±1] = PD[(a/x)±1], it has height one. Similarly, the ideal PA + (a/x)A is a
height-one prime ideal of A.



FACTORIALITY AND CLASS GROUPS OF UPPER CLUSTER ALGEBRAS AND FLIRS 49

The two ideals PA + xA and PA + (a/x)A are distinct since their localizations in the
two charts are different. In addition, these are the only two height-one prime ideals of
A over P , since the Laurent polynomial rings D[x±1] and D[(a/x)±1] have no further
height-one primes over P .

(2) Now A/PA ∼= D[x, y]/(P, xy − a) ∼= (D/P )[x, y]/(xy − a) with a the image of a

in D/P . The latter ring is a domain because x and a are coprime in (D/P )[x] [Fos73,
Lemma 14.1]. Thus, the ideal PA is a prime ideal of A. Since it localizes to PD[x±1], it
has height one. □

Lemma 7.6. The claim of Proposition 7.4 holds for isolated cluster algebras.

Proof. As shown in the proof of Lemma 5.3, an isolated cluster algebra A is an iterated
FLIR of the form

DP[x1, f1/x1][x2, f2/x2] · · · [xn, fn/xn].

By inductive application of Lemma 7.5, we obtain that the stated ideals are distinct
height-one prime ideals of A containing xi.

Conversely, suppose Q ∈ X(A) contains xi. Then Q contains fi = xix
′
i ∈ DP, and

hence P := Q ∩ DP has height one by Lemma 3.5. Again by iterated application of
Lemma 7.5, we obtain that Q is of the stated form. □

For extending this result to acyclic cluster algebras, we use that an acyclic cluster
algebra has a cluster cover by isolated cluster algebras in which only initial variables
are frozen [Mul14, Proposition 4]. Thus, no mutation is necessary to obtain this cluster
cover.

Proof of Proposition 7.4. Let I be the set of all partners of i. Freezing {xi : i ∈ [1, n]\I }
yields an isolated cluster algebra A† = DP† with seed (x†, y†, B†) by Lemma 7.3. By
[Mul14, Lemma 1], the freezing A† is a cluster localization of A.

Note that upon localizing to A†, the partners of i do not change. Therefore, Lemma 7.6
shows that the stated ideals are all distinct in A†, and hence also in A.

It therefore remains to show that every height-one prime ideal Q ∈ X(A) containing
xi is of the stated form. Define P ′ := QA† ∩ DP†. Since fi = xix

′
i ∈ Q, also fi ∈ P ′.

Lemma 7.5 shows that P ′ has height one (keeping in mind that A† is a DP†-FLIR). Now
P ′ first restricts to P ′′ := P ′ ∩DP[x†], and then extends to the height-one prime ideal
P := P ′′DP[x] of DP[x]. Note that P ⊆ Q, since

P ′′ = QA† ∩DP[x†] = (QA† ∩A) ∩DP[x†] = Q ∩DP[x†].
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For each j ∈ Partner(P ), we have fj = xjx′
j ∈ P ⊆ Q, so xj ∈ Q or x′

j ∈ Q. Let
{i} ⊆ T ⊆ Partner(P ) be such that j ∈ T if and only if xj ∈ Q. Define

Q0 := PA +
∑
j∈T

xjA +
∑

j∈Partner(P )\T

x′
jA.

Then Q0 ⊆ Q, and we claim equality.
Since the seed (x, y, B) is acyclic, the algebra A has a cluster cover by isolated cluster

algebras, where moreover each of the cluster localizations arises by freezing a subset of
variables of the initial seed. This can be seen from the inductive construction in the proof
of [Mul14, Proposition 4]. To show Q0 = Q, it therefore suffices to show Q0A‡ = QA‡

for every isolated cluster localization (using [Sta25, Lemma 00EO]).
Fix a subset I ⊆ [1, n] such that

A‡ := A[x‡
i : i ∈ I] = A[x−1

i : i ∈ I]

is an isolated cluster algebra. The coefficient semifield of A‡ is P‡ := P⊕Trop(xi : i ∈ I),
and the variables and coefficients corresponding to i ∈ I have been removed from the
seed (x‡, y‡, B‡).

Note that QA‡ = A‡ if and only if T ∩ I ̸= ∅. Then also Q0A‡ = A‡.
Now let QA‡ be a proper ideal of A‡. Then QA‡ is a height-one prime ideal of the

isolated cluster algebra A‡. Lemma 7.6 shows QA‡ = Q0A‡ (the partner set Partner(P )\I
may become smaller in A‡, but every generator of QA‡ is present in Q0). □

Example 7.7. A subtle point in the previous proof is the way of associating P to Q.
Passing to an isolated cluster localization may appear convoluted, but is indeed necessary:
the more obvious approach of considering Q ∩D[x] does not work in general. Indeed,
the prime ideal Q ∩D[x] may not even have height one in D[x].

To illustrate this, consider the A3-cluster algebra A (over Z, without coefficients). The
algebra A is generated by x1, x2, x3, x′

1, x′
2, x′

3, subject to the relations

x1x′
1 = x3x′

3 = 1 + x2 and x2x′
2 = x1 + x3.

Here 1 and 3 are (1 + x2)-partners. A height-one prime ideal of A is Q := (x1, x3) =
(x1, x3, 1 + x2) (Proposition 7.4). The contraction Q ∩ Z[x1, x2, x3] is the maximal ideal
(x1, x3, 1 + x2), which has height 3. On the other hand, freezing at x2 (here {2} is the
complement of the partner set {1, 3}), yields an isolated cluster algebra with coefficient
ring Z[x±1

2 ]. Following the proof, now P ′ = QA[x−1
2 ] ∩ Z[x±1

2 ] = (1 + x2) has height one,
and so does P = (1 + x2)Z[x1, x2, x3].

7.3. Open Questions. We close with two open questions.

Question 7.8. Is every LIR over a Krull domain a FLIR?

https://stacks.math.columbia.edu/tag/00EO


FACTORIALITY AND CLASS GROUPS OF UPPER CLUSTER ALGEBRAS AND FLIRS 51

We currently do not know an example of a LIR that is not a FLIR. In the one-variable
case every LIR is a FLIR by Proposition 3.14. However, this case is too special to deduce
a general conjecture. A positive answer to Question 7.8 would imply that every upper
cluster algebra is a FLIR, and hence a Krull domain. Such a result would already be
interesting for special ground rings, such as fields or Z.

Currently, there is no known example of a non-Krull upper cluster algebra (under
the obviously necessary condition that the ground ring is Krull). A counterexample to
Question 7.8 may be easier to find, because the class of LIRs is much larger than the
class of upper cluster algebras, already in the one-variable case (Example 3.16).

For cluster algebras, the following is known.

• The Markov cluster algebra (over Z) is not a Krull domain [GELS19, §6]. However,
the upper cluster algebra is factorial and hence a Krull domain.

• By an example of Speyer, upper cluster algebras need not be finitely generated
[Spe13]. Speyer’s example is a FLIR, so FLIRs need not be finitely generated.

The second question concerns the computational complexity of the Banff algorithm.
Given an explicit FLIR, the complexity of our algorithms is clearly governed by multi-
variate polynomial factorization over the field of fractions of the ground ring.

If we work with locally acyclic cluster algebras, more typically, the input will be
a matrix with the Banff property. The Banff algorithm then performs a sequence of
mutations and freezings to obtain a cluster cover by isolated cluster algebras. It is not
clear how to obtain a reasonable upper bound on the complexity in this setting.

Question 7.9. What is the computational complexity of the Banff algorithm (assuming
the input is a Banff exchange matrix, to assure termination)?

Since it is not understood which exchange matrices have the Banff property, one should
presumably deal with this question in natural subclasses, such as cluster algebras arising
from surfaces.
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