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Abstract. A classical result of Claborn states that every abelian group is
the class group of a commutative Dedekind domain. Among noncommutative
Dedekind prime rings, apart from PI rings, the simple Dedekind domains form a
second important class. We show that every abelian group is the class group of
a noncommutative simple Dedekind domain. This solves an open problem stated
by Levy and Robson in their recent monograph on hereditary Noetherian prime
rings.

1. Introduction

Throughout the paper, a domain is a not necessarily commutative unital ring
in which the zero element is the unique zero divisor. In [Cla66Cla66], Claborn showed
that every abelian group G is the class group of a commutative Dedekind domain.
An exposition is contained in [Fos73Fos73, Chapter III §14]. Similar existence results,
yielding commutative Dedekind domains which are more geometric, respectively
number theoretic, in nature, were obtained by Leedham-Green in [LG72LG72] and Rosen
in [Ros73Ros73, Ros76Ros76]. Recently, Clark in [Cla09Cla09] showed that every abelian group is
the class group of an elliptic commutative Dedekind domain, and that this domain
can be chosen to be the integral closure of a PID in a quadratic field extension.
See Clark’s article for an overview of his and earlier results. In commutative
multiplicative ideal theory also the distribution of nonzero prime ideals within the
ideal classes plays an important role. For an overview of realization results in this
direction see [GHK06GHK06, Chapter 3.7c].

A ring R is a Dedekind prime ring if every nonzero submodule of a (left or
right) progenerator is a progenerator (see [MR01MR01, Chapter 5]). Equivalently, R is
a hereditary Noetherian prime ring which is also a maximal order in its simple
Artinian quotient ring. A Dedekind domain is a Dedekind prime ring R which is also
a domain (equivalently, udimRR = udim RR = 1). To a Dedekind prime ring R one
can associate an (abelian) class group G(R) in such a way that K0(R) ∼= G(R)×Z.
Equivalently, G(R) can also be interpreted as a group of stable isomorphism classes
of essential right ideals of R. Since K0 is Morita invariant, the same holds for
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the class group. Every Dedekind prime ring is Morita equivalent to a Dedekind
domain.

Realization questions for class groups within the class of strictly noncommutative
Dedekind prime rings have an easy answer. If R is a commutative Dedekind domain
with class group G(R) and M is a finitely generated projective R-module, then
S = EndR(M) is a Dedekind prime ring with G(S) ∼= G(R). However, S is a PI
ring, and thus in many aspects close to being commutative.

On the other hand, there exist Dedekind prime rings (and domains) of a very
different nature. For instance, the first Weyl algebra A1(K) over a field K of
characteristic 0 is a simple Dedekind domain with trivial class group. The ring
R = R[X, Y ]/(X2 +Y 2−1) is a commutative Dedekind domain with G(R) ∼= Z/2Z.
If σ ∈ Aut(R) denotes the automorphism induced by the rotation by an irrational
angle, then the skew Laurent polynomial ring T = R[x, x−1;σ] is a noncommutative
Dedekind domain with G(T ) ∼= Z/2Z. Similar constructions exist that show that
Zn for n ∈ N0 appears as class group of a noncommutative Dedekind prime ring.
(See [MR01MR01, §7.11 and §12.7] for details.)

The mentioned rings are not Morita equivalent to commutative Dedekind domains
and they are all simple rings. In fact, in [GS05GS05], a striking dichotomy is established:
A Dedekind domain which is finitely generated as an algebra over C is commutative
or simple. More generally, if K is a field and a K-algebra R is a Dedekind prime
ring such that dimK R < |K| and R ⊗K K is Noetherian, then R is a PI ring or
simple.

In [LR11LR11, Problem 54.7], Levy and Robson state it as an open problem to
determine which abelian groups can appear as class groups of simple Dedekind
prime rings. The present paper answers this question by showing that any abelian
group can be realized as the class group of a simple Dedekind domain. The main
theorem we prove is the following.

Theorem 1.1. Let G be an abelian group, K a field, and κ a cardinal. Then
there exists a K-algebra T which is a noncommutative simple Dedekind domain,
G(T ) ∼= G, and each class of G(T ) contains at least κ maximal right ideals of T .

Simple noncommutative Dedekind domains are canonically obtained either as
skew Laurent polynomial rings R[x, x−1;σ] or as skew polynomial rings R[x; δ],
where R is a commutative Dedekind domain and σ is an automorphism, respectively
δ a derivation. The domains we construct are skew Laurent polynomial rings. It is
well understood how class groups behave under this extension. In this way, the
problem reduces to the construction of a commutative Dedekind domain R with
prescribed class group and automorphism σ of R. The automorphism σ must be
such that no proper nonzero ideal a is σ-stable (that is, σ(a) = a), but such that
the induced automorphism on the class group of R is trivial.

The actual construction is very conceptual in nature and proceeds through the
following steps:
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(1) Construct a commutative Krull monoid with class group G and a monoid
automorphism τ of H such that no nonempty proper divisorial ideal of H is
τ -stable.

(2) Extend τ to K[H]. The semigroup algebra K[H] is a commutative Krull
domain with class group isomorphic to G. The crucial step lies in establishing
that no nonzero proper divisorial ideal of K[H] is τ -stable.

(3) A suitable localization R = S−1K[H] is a commutative Dedekind domain, has
the same class group as K[H], and τ extends to R. This is analogous to the
same step in Claborn’s proof.

(4) The skew Laurent polynomial ring T = R[x, x−1; τ ] is a noncommutative simple
Dedekind domain with G(T ) ∼= G.

The methods work in greater generality. For instance, the field K can be replaced
by a commutative Krull domain with suitable automorphism. The full result is
stated in Theorem 3.123.12. Theorem 1.11.1 is an immediate consequence of Theorem 3.43.4
and Theorem 3.123.12. The actual construction is mostly commutative in nature.
Before giving the proofs in Section 33, a number of preliminary results are recalled
in Section 22.

Remark 1.2. Let R be a commutative Dedekind domain which is an affine algebra
over a field K of characteristic 0. Then the ring of differential operators D(R) is a
simple Dedekind domain, and the inclusion R ↪→ D(R) induces an isomorphism
K0(R) ∼= K0(D(R)) (see [MR01MR01, Chapter 15]). This induces an isomorphism
G(R) ∼= G(D(R)). In [Ros73Ros73], Rosen has shown that any finitely generated abelian
group is the class group of a commutative Dedekind domain which is affine over
a number field. This gives a different way of showing that any finitely generated
abelian group is the class group of a simple Dedekind domain. Using the results
from [Cla09Cla09], this can be extended to groups of the form F/H where F is free
abelian and H is a finitely generated subgroup.

2. Background: Krull monoids and skew Laurent polynomial rings

All rings and modules are unital. Ring homomorphisms preserve the multiplica-
tive identity. If X is a subset of a domain, we set X• = X r {0}. A monoid is a
cancellative semigroup with a neutral element. Monoid homomorphisms preserve
the neutral element. If H is a monoid, H× denotes its group of units. H is
reduced if H× = {1}. A commutative monoid is torsion-free if its quotient group is
torsion-free. N denotes the set of positive integers and N0 the set of all nonnegative
integers. For sets A and B, inclusion is denoted by A ⊂ B and strict inclusion by
A ( B.

For a set P , let F(P ) denote the multiplicatively written free abelian monoid
with basis P . The quotient group q(F(P )) of F(P ) is the free abelian group with
basis P . Each a ∈ q(F(P )) has a unique (up to order) representation of the form
a = pn1

1 · · · pnr
r with r ∈ N0, pairwise distinct p1, . . . , pr ∈ P and n1, . . . , nr ∈ Z•.
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We define supp(a) = {p1, . . . , pr}, vpi
(a) = ni for i ∈ [1, r] and vq(a) = 0 for all

q ∈ P r supp(a).

2.1. Commutative Krull monoids and commutative Krull domains. We
use [GHK06GHK06, Chapter 2] as a reference for commutative Krull monoids and [Fos73Fos73]
as reference for commutative Krull domains. For semigroup algebras we refer to
[Gil84Gil84].

Let (H, ·) be a commutative monoid and let τ ∈ Aut(H). Let q(H) denote the
quotient group of H. The automorphism τ naturally extends to an automorphism
of q(H), which we also denote by τ . For subsets X, Y ⊂ q(H) we define (Y :X) =
{ a ∈ q(H) | aX ⊂ Y }. We set X−1 = (H :X) and Xv = (X−1)−1. Then
τ
(
(Y :X)

)
= (τ(Y ) :τ(X)) and hence τ(X−1) = τ(X)−1 and τ(X)v = τ(Xv).

A subset a ⊂ q(H) is a fractional ideal of H if Ha ⊂ a and there exists a d ∈ H
such that da ⊂ H. If in addition a ⊂ H, then a is an ideal of H. A fractional
ideal a is divisorial if a = av. For all a ∈ q(H), (aH)v = aH and hence principal
fractional ideals are divisorial. If a and b are divisorial fractional ideals of H, their
divisorial product is a ·v b = (a · b)v. For principal fractional ideals, the divisorial
product coincides with the usual ideal product.
H is a commutative Krull monoid if it is v-Noetherian (i.e., satisfies the ascending

chain condition on divisorial ideals) and completely integrally closed (i.e, whenever
x ∈ q(H) is such that there exists a c ∈ H such that cxn ∈ H for all n ∈ N, then
already x ∈ H). From now on, let H be a commutative Krull monoid. If a is
a nonempty divisorial fractional ideal of H, then a is invertible with respect to
the divisorial product, i.e., a ·v a−1 = H. We denote by Fv(H)× the group of all
nonempty divisorial fractional ideals, and by I∗v (H) the monoid of all nonempty
divisorial ideals. Let X(H) be the set of nonempty divisorial prime ideals. Recall
that X(H) consists precisely of the prime ideals of height 1.

With respect to the divisorial product, I∗v (H) is the free abelian monoid with
basis X(H), and Fv(H)× is the free abelian group with basis X(H). Hence, every
a ∈ Fv(H)× has a unique representation of the form

a = pn1
1 ·v . . . ·v pnr

r

with r ∈ N0, pairwise distinct p1, . . . , pr ∈ X(H) and n1, . . . , nr ∈ Z•. We have
supp(a) = {p1, . . . , pr} and vpi

(a) = ni for i ∈ [1, r].
The principal fractional ideals form a subgroup of Fv(H)×. The class group of

H is the factor group

C(H) = Fv(H)×/{ aH | a ∈ q(H) }.

We use additive notation for C(H). If a ∈ Fv(H)×, we write [a] = [a]H for its class
in C(H). If a, b ∈ Fv(H)×, then [a ·v b] = [a] + [b].
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Any τ ∈ Aut(H) induces an automorphism τ∗ of Fv(H)× by means of τ∗(a) =
τ(a). Then τ∗(X(H)) = X(H), the restriction τ∗ = τ∗|I∗

v (H) is a monoid automor-
phism of I∗v (H), and τ∗(aH) = τ(a)H for all a ∈ q(H). In particular, τ∗ induces
an automorphism of C(H), also denoted by τ∗, by means of τ∗([a]) = [τ∗(a)].

A commutative Krull domain is a domain D such that D• is a commutative
Krull monoid. We use similar notation for Krull domains as we have introduced
for Krull monoids. If q(D) denotes the quotient field of D and X ⊂ q(D), then
(D :X) is always additively closed. This implies that there exists an isomorphism

Fv(D)× → Fv(D•)×, a 7→ a•.

Concepts related to divisorial ideals on D correspond to ones on D•. We make
use of this without further mention. In particular, C(D) ∼= C(D•) canonically, and
we identify. A commutative domain D is a Dedekind domain if and only if it is
a Krull domain with dim(D) ≤ 1. Then every nonzero fractional ideal of D is
invertible and hence divisorial. In particular, C(D) is the usual ideal class group of
the Dedekind domain.

We will construct Krull domains from Krull monoids using semigroup algebras.
The following result is essential.

Proposition 2.1 ([Gil84Gil84, Theorem 15.6 and Corollary 16.8]). Let D be a commu-
tative domain and H a torsion-free commutative monoid. The semigroup algebra
D[H] is a Krull domain if and only if D is a Krull domain, H is a Krull monoid,
and H× satisfies the ascending chain condition on cyclic subgroups. In this case
C(D[H]) ∼= C(D)× C(H).

The isomorphism between C(D)× C(H) and C(D[H]) is obtained naturally by
extending representatives of the divisorial ideal classes in D, respectively H, to
D[H]. If a is a fractional ideal of D, let a[H] = aD[H] be the extension of a to
D[H]. It consists of all elements all of whose coefficients are contained in a. If b is
a fractional ideal of H, let D[b] = bD[H] be the extension of b to D[H]. It consists
of all elements whose support is contained in b. By a[b] we denote the fractional
ideal whose support is contained in b and whose coefficients are contained in a.
Then a[b] = a[H] ·D[b]. Explicitly, the isomorphism of class groups is given by

C(D)× C(H)→ C(D[H]), ([a]D, [b]H) 7→
[
a[b]

]
D[H]

.

Let σ ∈ Aut(D), τ ∈ Aut(H) and let ϕ ∈ Aut(D[H]) be the extension of σ and τ
to D[H] (i.e., ϕ|D = σ and ϕ|H = τ). Under the stated isomorphism of the class
groups, the automorphism (σ∗, τ∗) on C(D)× C(H) corresponds to ϕ∗ on C(D[H]).
From now on we identify C(D[H]) ∼= C(D)× C(H).

Proposition 2.2 (Nagata’s Theorem, [Fos73Fos73, Corollary 7.2]). Let D be a commu-
tative Krull domain and S ⊂ D• a multiplicative subset. Then the localization S−1D
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is a Krull domain and the map I∗v (D)→ I∗v (S−1D), a 7→ S−1a induces an epimor-
phism C(D)→ C(S−1D) with kernel generated by those p ∈ X(D) with p ∩ S 6= ∅.
In particular, if S is generated by prime elements of D, then C(D) ∼= C(S−1D).

Let D be a commutative Krull domain and let S ⊂ D• be a multiplicative subset.
Then S−1D is a Dedekind domain if and only if dim(S−1D) ≤ 1. This is the case
if and only if S ∩P 6= ∅ for all P ∈ spec(D) with ht(P) > 1.

2.2. Skew Laurent polynomial rings. Let R be a ring and σ ∈ Aut(R). By
R[x, x−1;σ] we denote the ring of skew Laurent polynomials. R[x, x−1;σ] consists
of polynomial expressions in x and x−1 with coefficients in R and subject to
ax = xσ(a) for all a ∈ R. Let a be an ideal of R. If σ ∈ Aut(R), then a is σ-stable
if σ(a) = a. The ring R is σ-simple if 0 and R are the only σ-stable ideals of R.

Proposition 2.3 ([MR01MR01, Theorem 1.8.5]). Let R be a ring, σ ∈ Aut(R) and
T = R[x, x−1;σ]. Then T is a simple ring if and only if R is σ-simple and no
power of σ is an inner automorphism.

If R is a commutative ring, the identity is the only inner automorphism of R.
Hence the second condition in the previous theorem reduces to σ having infinite
order. If R is a σ-simple commutative domain which is not a field, then σ has
infinite order: Suppose σn = id for some n ∈ N. Let 0 6= a ( R be an ideal of R.
Then aσ(a) · · · σn−1(a) 6= 0 is a proper ideal of R which is σ-stable.

Combining our observations so far with [MR01MR01, Theorem 7.11.2], we obtain the
following.

Proposition 2.4 ([MR01MR01, Theorem 7.11.2]). Let R be a commutative Dedekind
domain which is not a field, let σ ∈ Aut(R), and let T = R[x, x−1;σ]. The following
conditions are equivalent:
(a) T is simple.
(b) T is hereditary.
(c) The Krull dimension of T is 1.
(d) T is a noncommutative Dedekind domain.
(e) R is σ-simple.

The behavior of the Grothendieck group K0 under skew Laurent polynomial
extensions is well understood. We denote classes in K0 using angle brackets. We
recall the result from [MR01MR01, §12.5]. Let R be a ring and σ ∈ Aut(R). Let M
be a right R-module. Define a new right R-module Mσ as follows: As a set,
Mσ is in bijection with M , where the element of Mσ corresponding to m ∈ M
is written as mσ. The abelian group structure on Mσ is the one induced from
M , i.e., mσ + nσ = (m + n)σ. The right R-module structure on Mσ is defined
by (mσ)r = (mσ−1(r))σ. A similar construction works for left modules: To a
left module M associate σM with r(σm) = σ(σ(r)m). In particular, σR with
the usual right R-module structure is an R-bimodule, and M ⊗R (σR) ∼= Mσ as
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right R-modules. Now, σ induces an automorphism σ∗ of K0(R) by means of
〈M〉 7→ 〈Mσ〉.

Let T = R[x, x−1;σ]. For a finitely generated projective right R-moduleM ,M⊗R
T is a finitely generated projective right T -module. This induces a homomorphism
α : K0(R) → K0(T ). A ring R is right regular if each finitely generated right
R-module has a projective resolution of finite length.

Proposition 2.5 ([MR01MR01, Theorem 12.5.6]). Let R be a right regular, right Noe-
therian ring. Let σ ∈ Aut(R) and T = R[x, x−1;σ]. Then the sequence

K0(R) id−σ∗ // K0(R) α // K0(T ) // 0

is exact.

Let R be a Dedekind prime ring. Each finitely generated projective right R-
module P has a uniform dimension udimR(P ) ∈ N0. The uniform dimension is
additive on direct sums and induces an epimorphism udimR : K0(R) → Z. The
(ideal) class group of R is G(R) = ker(udimR : K0(R) → Z). The epimorphism
udimR splits, henceK0(R) ∼= G(R)×Z. Let G′ denote the set of stable isomorphism
classes of essential right ideals of R. G′ can be endowed with the structure of an
abelian group by setting [a] + [b] = [c] if and only if a ⊕ b ∼= R ⊕ c. Then G′ is
isomorphic to G(R) by means of G′ → G(R), [a] 7→ 〈a〉 − 〈R〉, and we identify.
When we say that a class g ∈ G(R) contains an essential right ideal a of R, we
mean g = [a] = 〈a〉 − 〈R〉.

If R is commutative, G(R) is indeed isomorphic the usual ideal class group. The
isomorphism C(R)→ G(R) is given by [a] 7→ 〈a〉 − 〈R〉. If σ is an automorphism
of R, we note that under the stated isomorphism of C(R) and G(R), the induced
automorphism σ∗ : C(R) → C(R) corresponds to σ∗ : G(R) → G(R). This is so,
because for an ideal a ⊂ R, we have aσ ∼= σ(a) as right R-modules, via aσ 7→ σ(a).

Let R be a commutative Dedekind domain. Since udimT (P ⊗R T ) = udimR(P )
for all finitely generated projective R-modules P , we obtain a commutative diagram

K0(R) id−σ∗ //

��

K0(R) α //

��

K0(T ) //

��

0

G(R)× Z
(id−σ∗,id)

// G(R)× Z
(α0,id)

// G(T )× Z // 0

with the vertical arrows being isomorphisms induced by the splitting of udimR,
udimR, and udimT respectively. Here α0 is the map induced on G(R)→ G(T ) by
α. Using the isomorphism C(R) ∼= G(R), we obtain a short exact sequence

C(R) id−σ∗ // C(R) β // G(T ) // 0.

Here, β([a]R) = 〈a⊗R T 〉 − 〈T 〉 = [a⊗R T ]T ∈ G(T ).
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Remark 2.6. (1) If R and S are Morita equivalent Dedekind prime rings, the
Morita equivalence induces an isomorphism K0(R) ∼= K0(S), which restricts
to an isomorphism G(R) ∼= G(S).

(2) Let R be a Dedekind prime ring. If a and b are stably isomorphic essential
right ideals of R, that is [a] = [b] in G(R), then, in general, it does not follow
that a ∼= b. However, if udimRR ≥ 2, then [a] = [b] does imply a ∼= b ([LR11LR11,
Corollary 35.6]). Note that S = Mn(R), with n ≥ 2 is a Dedekind prime ring
with G(R) ∼= G(S) and udimS S = n ≥ 2.

3. Construction and main results

Lemma 3.1. Let H be a commutative Krull monoid, τ ∈ Aut(H), and a ∈ F×v (H).
Then τ(a) = a if and only if τ(a) ⊂ a.

Proof. Suppose that τ(a) ⊂ a. Then there exists b ∈ I∗v (H) such that τ(a) = a ·v b.
Let a = pn1

1 ·v. . .·vpnr
r with r ∈ N0, p1, . . . , pr ∈ X(H) and n1, . . . , nr ∈ Z•. Similarly,

let b = qm1
1 ·v . . . ·v qms

s with s ∈ N0, q1, . . . , qs ∈ X(H) and m1, . . . , ms ∈ N. Then

τ(a) = τ(p1)n1 ·v . . . ·v τ(pr)nr = pn1
1 ·v . . . ·v pnr

r ·v qm1
1 ·v . . . ·v qms

s .

Then necessarily n1 + · · ·+ nr = n1 + · · ·+ nr +m1 + · · ·+ms. Hence s = 0 and
b = H. Thus τ(a) = a. �

Of course, the claim of the previous lemma does not hold for ideals which are
not divisorial. For a counterexample, let K be a field, H = K[..., X−1, X0, X1, . . .]•,
τ(Xi) = Xi+1 with τ |K = id, and a = (X0, X1, . . .).

Lemma 3.2. Let H be a commutative Krull monoid and let τ ∈ Aut(H). The
following statements are equivalent:
(a) τ(a) 6= a for all a ∈ Fv(H)× r {H}.
(b) τ(a) 6= a for all a ∈ I∗v (H) r {H}.
(c) τ(a) 6= a for all squarefree a ∈ I∗v (H) r {H}.
(d) For all finite ∅ 6= X ⊂ X(H), it holds that τ∗(X) = { τ(p) | p ∈ X } 6= X.
(e) The induced permutation τ∗ of X(H) has no finite orbits.
If C(H) = 0, then any of the above conditions is equivalent to
(f) For all a ∈ H rH× and ε ∈ H×, τ(a) 6= εa.
In particular, if these equivalent conditions are satisfied and ∅ 6= A ⊂ q(H) is

finite with A 6⊂ H×, then τ(A) 6= A.

Proof. (a)⇒ (b)⇒ (c): Trivial.
(c) ⇒ (d): By contradiction. Suppose that ∅ 6= X ⊂ X(H) is such that

τ∗(X) = X. Set a = (∏p∈X p)v. Then a ∈ I∗v (H) r {H}, a is squarefree, and
τ(a) = τ

(
(∏p∈X p)v

)
= (∏p∈X τ(p))v = a. This contradicts (c).

(d)⇒ (e): Clear.
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(e) ⇒ (a): Let a ∈ F∗v (H) r {H}. Then a = pn1
1 ·v . . . ·v pnr

r with r ∈ N,
p1, . . . , pr ∈ X(H) and n1, . . . , nr ∈ Z•. Now τ(a) = τ(p1)n1 ·v . . . ·v τ(pr)nr is
the unique representation of τ(a) as divisorial product of divisorial prime ideals.
Suppose that τ(a) = a. Then τn(a) = a for all n ∈ Z. Hence the τ∗-orbit of p1 is
contained in supp(a) = {p1, . . . , pr}. This contradicts (e).

(b)⇔ (f) Suppose that C(H) is trivial. Then every divisorial ideal is principal.
The claim follows since aH = bH for a, b ∈ H if and only if there exists ε ∈ H×
with a = bε.

We still have to show the final implication and do so by contradiction. Let
∅ 6= A = {a1, . . . , an} ⊂ q(H) with A 6⊂ H×. Since A 6⊂ H×, the set X =⋃n
i=1 supp(aiH) ⊂ X(H) is nonempty. Thus τ∗(X) 6= X by (d), and hence τ(A) 6=

A. �

Definition 3.3. Let H be a commutative Krull monoid and τ ∈ Aut(H). H is
called τ -v-simple if the equivalent conditions of Lemma 3.23.2 are satisfied. If D is
a commutative Krull domain and σ ∈ Aut(D), then D is called σ-v-simple if the
commutative Krull monoid D• is (σ|D•)-v-simple.

A lemma analogous to Lemma 3.23.2 holds for commutative Krull domains. Since
there is a correspondence between divisorial ideals of D and divisorial ideals of D•,
D is σ-v-simple if and only if σ(a) 6= a for all divisorial ideals a of D, etc.

We first construct a reduced commutative Krull monoid H with given class group
G, as well as an automorphism of H such that H is τ -v-simple, and such that τ∗
acts trivially on the class group.
Theorem 3.4. Let G be an abelian group and κ an infinite cardinal. Then there
exists a reduced commutative Krull monoid H and an automorphism τ of H such
that C(H) ∼= G, τ∗ = idC(H), and H is τ -v-simple. Each class of C(H) contains κ
nonempty divisorial prime ideals.
Proof. Let (G,+) be an additive abelian group, and let Ω be a set of cardinality κ.
Let τ0 : Ω → Ω be a permutation such that τ0(X) 6= X for all finite ∅ 6= X ⊂ Ω.
(Such a permutation always exists. Ω is in bijection with Ω × Z, and the map
Ω× Z→ Ω× Z, (x, n) 7→ (x, n+ 1) has the desired property.)

Let D = F(Ω×G) be the free abelian monoid with basis Ω×G. Then τ0 induces
an automorphism τ ∈ Aut(D) with the property that τ((x, g)) = (τ0(x), g) for
all x ∈ Ω and g ∈ G. Let ψ : D → G be the unique homomorphism such that
ψ((x, g)) = g for all x ∈ Ω and g ∈ G. Set H = ψ−1(0G). Since ψ(τ((x, g))) = g =
ψ((x, g)), we find τ(H) ⊂ H. Hence τ restricts to an automorphism of H, again
denoted by τ .

We claim that (H, ·) is a reduced commutative Krull monoid with class group
G, that H is τ -v-simple, and that the induced automorphism τ∗ of C(H) is the
identity. Moreover, each class of C(H) contains |Ω| divisorial prime ideals. That H
is a reduced commutative Krull monoid with class group G follows from [GHK06GHK06,
Proposition 2.5.1.4]. It also follows that the inclusion ι : H ↪→ D is a divisor theory.
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Hence, X(H) = { (x, g)D ∩H | x ∈ Ω, g ∈ G }. By construction, τ does not fix
any finite nonempty subset of X(H), and hence H is τ -v-simple. On the other
hand, ψ(τ(x, g)) = ψ((x, g)) = g, so that τ∗ acts trivially on C(H). �

Remark 3.5. Let H be a reduced commutative Krull monoid. We note that it is
easy to determine Aut(H). Let τ ∈ Aut(H). Then τ induces an automorphism τ∗
of I∗v (H) and further an automorphism of C(H), that we denote by τ∗ again. For
g ∈ C(H), denote by X(H)(g) = { p ∈ X(H) | [p] = g } the nonempty divisorial
prime ideals in class g. For all p ∈ X(H), it holds that [τ∗(p)] = τ∗([p]). In
particular, if g and h ∈ C(H) lie in the same τ∗-orbit, then |X(H)(g)| = |X(H)(h)|.
The automorphism τ is uniquely determined by the induced τ∗ ∈ Aut(C(H)) as
well as the family of bijections X(H)(g)→ X(H)(τ∗(g)) induced by τ∗.

Conversely, suppose that α is an automorphism of C(H) such that for all
g ∈ C(H), |X(H)(g)| = |X(H)(α(g))|. For each class g ∈ C(H), let βg : X(H)(g)→
X(H)(α(g)) be a bijection. Then there exists a (uniquely determined) automor-
phism τ ∈ Aut(H) with τ∗(p) = βg(p) for all g ∈ C(H) and p ∈ X(H)(g).

In particular, we obtain the following strengthening of Theorem 3.43.4: If H is a
commutative Krull monoid such that each class contains either zero or infinitely
many divisorial prime ideals, then there exists a τ ∈ Aut(H) such that H is
τ -v-simple and τ∗ is the identity on C(H).

Let P be a set, F(P ) the (multiplicatively written) free abelian monoid with
basis P , and G = q(F(P )) the free abelian group with basis P . Since every element
of G ∼= Z(P ) has finite support, any total order on P induces a total order on G by
means of the lexicographical order and the natural total order on Z. Explicitly, for
a ∈ G r {1} we define a ≥ 1 if and only if vp(a) ≥ 0 for p = max supp(a). With
respect to any such order, G is a totally ordered group. If (G, ·,≤) is a totally
ordered group, we set G>1 = { a ∈ G | a > 1 } and G≥1 = { a ∈ G | a ≥ 1 }.

Lemma 3.6. (1) Let P be a set and let τ : P → P be a permutation having no
finite orbits. Then there exists a total order ≤ on P such that τ is order-
preserving with respect to ≤. Moreover, τ(x) > x for all x ∈ P .

(2) Let (P,≤P ) be a totally ordered set. Let τ : P → P be a permutation such
that τ is order-preserving and τ(x) >P x for all x ∈ P . Let G = q(F(P )),
τ ∈ Aut(G) with τ |P = τ , and let ≤ be the total order on G induced by ≤P .
Then τ(a) > a for all a ∈ G>1. In particular, τ is order-preserving and
τ(G>1) ⊂ G>1.

Proof. (1) For x ∈ P , let xτ = { τn(x) | n ∈ Z } be its τ -orbit. Since xτ is infinite,
it is naturally totally ordered by τm(x) ≤ τn(x) if and only if m ≤ n. Fix an
arbitrary total order on the set of all τ -orbits. For x, y ∈ P , define x ≤ y if and
only if either xτ < yτ , or if xτ = yτ and there exists an n ∈ N0 such that y = τn(x).
Then ≤ is a total order on P , and τ is order-preserving with respect to this order.
Moreover, τ(x) > x for all x ∈ P .
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(2) As already observed, (G, ·,≤) is a totally ordered group. Let a ∈ G with
a > 1. We show τ(a) > a. We have a = pn1

1 · · · pnr
r with r ∈ N, pairwise distinct

p1, . . . , pr ∈ P and n1, . . . , nr ∈ Z•. Using the total order on P , we may assume
p1 > · · · > pr. Since a > 1, we have n1 > 0. Now, τ(a) = τ(p1)n1 · · · τ(pr)nr .
Since τ is order-preserving with respect to ≤P , we have τ(p1) > · · · > τ(pr) and
moreover τ(p1) > p1. From the way we defined the total order on G, it follows that
τ(a) > a > 1. In particular, τ is order-preserving and τ(G>1) ⊂ G>1. �

If F(P ) is a free abelian monoid and τ is an automorphism of F(P ) which has no
finite orbits on P , then Lemma 3.63.6 implies that the quotient group q(F(P )) admits
the structure of a totally ordered group with respect to which τ is order-preserving,
etc. The following is a strengthening of this result to quotient groups of reduced
commutative Krull monoids.

Proposition 3.7. Let H be a reduced commutative Krull monoid and let τ ∈
Aut(H) be such that H is τ -v-simple. Let G denote the quotient group of H, and
denote the extension of τ to Aut(G) again by τ . Then there exists an order ≤ on
G such that (G, ·,≤) is a totally ordered group, H ⊂ G≥1, and τ(a) > a for all
a ∈ G>1. In particular, τ is order-preserving on G and τ(G>1) ⊂ G>1.

Proof. Since H is a commutative Krull monoid, it has a divisor theory. Because H
is reduced, this divisor theory can be taken to be an inclusion. Thus, explicitly,
there exists a set P such that ι : H ↪→ F = F(P ), G ⊂ q(F ), and such that the
inclusion ι induces a monoid isomorphism

ι∗ : F → I∗v (H), a 7→ aF ∩H.

Moreover, (ι∗)−1(aH) = a for all a ∈ H, and ι∗|P : P → X(H) is a bijection.
(See [GHK06GHK06, Theorem 2.4.7.3].) Recall that τ induces a monoid automorphism
τ∗ : I∗v (H)→ I∗v (H) and that τ∗(aH) = τ(a)H for all a ∈ H.

We first show that τ extends to an automorphism of F . Through ι∗, we obtain
an automorphism τ = (ι∗)−1 ◦ τ∗ ◦ ι∗ ∈ Aut(F ). But we also have H ⊂ F via the
inclusion ι. We claim that in fact τ |H = τ . Let a ∈ H. Then

τ(a) = (ι∗)−1 ◦ τ∗ ◦ ι∗(a) = (ι∗)−1 ◦ τ∗(aH) = (ι∗)−1(τ(a)H) = τ(a).

Moreover, τ extends to an automorphism of q(F ), again denoted by τ , and then
also τ |G = τ on G.

The automorphism τ induces a permutation on P , and Lemma 3.23.2(e)(e) implies
that τ does not have any finite orbits on P . Thus, Lemma 3.63.6(1)(1) implies that there
exists a total order ≤P on P such that τ |P : P → P is order-preserving and τ(p) > p
for all p ∈ P . Let ≤ denote the order on q(F ) induced by ≤P . Then (q(F ), ·,≤) is
a totally ordered group. By Lemma 3.63.6(2)(2), τ(a) > a for all a ∈ q(F )>1. Denote
the restriction of ≤ to G again by ≤. Then (G, ·,≤) is a totally ordered group,
and τ(a) > a for all a ∈ G>1. Clearly H ⊂ G≥1. �
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Let (G, ·,≤) be a totally ordered group and K a field. The group algebra K[G]
is naturally G-graded. Using the total order on G, it is easy to check that K[G]
is a domain. Every unit of K[G] is homogeneous, that is, K[G]× = {λg | λ ∈
K×, g ∈ G }. It follows that every nonzero principal ideal a of K[G] has a uniquely
determined generator of the form 1 + f with supp(f) ⊂ G>1. We call 1 + f the
normed generator of a.
Proposition 3.8. Let H be a reduced commutative Krull monoid, and let τ ∈
Aut(H) be such that H is τ -v-simple. Let G denote the quotient group of H and
let K be a field. If ϕ ∈ Aut(K[G]) with ϕ|H = τ and ϕ(K) ⊂ K, then K[G] is
ϕ-v-simple.
Proof. Denote the extension of τ to G again by τ . Note that ϕ|G = τ . By
Proposition 3.73.7, there exists an order ≤ on G such that (G, ·,≤) is a totally ordered
group and τ(G>1) ⊂ G>1. Since G is a subgroup of a free abelian group, it satisfies
the ascending chain condition on cyclic subgroups. Hence, K[G] is a commutative
Krull domain with trivial class group by Proposition 2.12.1. Thus, every divisorial ideal
of K[G] is principal. To show that K[G] is ϕ-v-simple it therefore suffices to show
ϕ(a) 6= a for all principal ideals a of K[G] with a /∈ {0, K[G]}. Let a be such an
ideal. Let f ∈ K[G] with supp(f) ⊂ G>1 be such that 1+f is the normed generator
of a. Since a 6= K[G], we have supp(f) 6= ∅. Now ϕ(1+f) = ϕ(1)+ϕ(f) = 1+ϕ(f).
Moreover, supp(ϕ(f)) = τ(supp(f)) ⊂ G>1. Hence 1+ϕ(f) is the normed generator
of ϕ(a). Since H is τ -v-simple, τ(supp(f)) 6= supp(f) by Lemma 3.23.2. Thus
1 + ϕ(f) 6= 1 + f , and ϕ(a) 6= a. �

Theorem 3.9. Let D be a commutative Krull domain and let σ ∈ Aut(D) be
such that D is σ-v-simple. Let H be a reduced commutative Krull monoid and let
τ ∈ Aut(H) be such that H is τ -v-simple. Let ϕ ∈ Aut(D[H]) denote the extension
of σ and τ to D[H], i.e., ϕ|D = σ and ϕ|H = τ . Then D[H] is ϕ-v-simple.
Proof. Let ϕ∗ denote the permutation of X(D[H]) induced by ϕ. There are injective
maps

ι∗D :

X(D) → X(D[H]),
p 7→ p[H],

ι∗H :

X(H) → X(D[H]),
p 7→ D[p].

The image of ι∗D consists of all p ∈ X(D[H]) with p ∩D• 6= ∅, while the image of
ι∗H consists of all p ∈ X(D[H]) with p∩H 6= ∅. Let K = q(D) and G = q(H). The
group algebra K[G] is the localization of D[H] by H and D•. There is a bijection

ι∗K[G] :


{ p ∈ X(D[H]) | p ∩ (D• ∪H) = ∅ } → X(K[G]),
p 7→ pK[G],
P ∩D[H] ←[ P.

In particular,
X(D[H]) = ι∗DX(D) ∪ ι∗HX(H) ∪ (ι∗K[G])−1X(K[G]).
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All of this follows from [Gil84Gil84, Chapter III, Sections 15 and 16], together with the fact
that nontrivial essential discrete valuation overmonoids (overrings) of commutative
Krull monoids (domains) bijectively correspond to nonempty (nonzero) divisorial
prime ideals. That ι∗D takes the stated form follows from [Gil84Gil84, Theorem 15.3],
and the corresponding fact for ι∗H is a consequence of [Gil84Gil84, Theorem 15.7]. The
stated decomposition of X(D[H]) follows from [Gil84Gil84, Corollary 15.9].

Since ϕ(H) = H and ϕ(D) = D, each of the sets ι∗DX(D), ι∗HX(H), and
(ι∗K[G])−1X(K[G]) is fixed by ϕ∗. To show ϕ∗(X) 6= X for all finite ∅ 6= X ⊂
X(D[H]), it therefore suffices to consider subsets of each of these three sets. If
X ⊂ ι∗DX(D), then ϕ∗(X) 6= X, since D is σ-v-simple. If X ⊂ ι∗HX(H), then
ϕ∗(X) 6= X, since H is τ -v-simple.

Finally, consider the case where X ⊂ (ι∗K[G])−1X(K[G]). Since ϕ(H) ⊂ H and
ϕ(D•) ⊂ D•, ϕ extends to an automorphism of K[G], which we again denote by
ϕ. It now suffices to show that K[G] is ϕ-v-simple. However, this follows from
Proposition 3.83.8. �

The following Lemma 3.103.10(1)(1) is a slight reformulation of the original localization
argument of Claborn, which can be found in [Fos73Fos73, Theorem 14.2] and [Cla66Cla66,
Theorem 7]. Since we need to observe some details in the argument, we give the
proof anyway. Recall that if D is a commutative domain and a, b ∈ D are coprime
(that is, aD ∩ bD = abD), then aX + b is a prime element of D[X] (see [Fos73Fos73,
Lemma 14.1]).
Lemma 3.10. Let D be a commutative Krull domain, and let H be a commutative
Krull monoid containing a countable set P of non-associated prime elements, so
that H = H0 ×F(P ) with a commutative Krull monoid H0. Suppose that D[H] is
a Krull domain.
(1) There exists a multiplicative subset S ⊂ D[H]• such that S is generated by

prime elements of D[H], S ∩D[H0] = ∅, and S−1D[H] is a Dedekind domain
but not a field.

(2) If ϕ ∈ Aut(D[H]) with ϕ(P ) ⊂ P , then S can be chosen in such a way that
ϕ(S) ⊂ S.

(3) Let S be a multiplicative subset of D[H]• such that S−1D[H] is a Dedekind
domain. Let ϕ ∈ Aut(D[H]) be such that D[H] is ϕ-v-simple and ϕ(S) ⊂
(S−1D[H])×. Then ϕ extends to an automorphism ϕS ∈ Aut(S−1D[H]) and
S−1D[H] is ϕS-simple.

Proof. (1) We have D[H] ∼= D[H0][F(P )] = D[H0][. . . , X−1, X0, X1, . . .]. Let P ∈
spec(D[H]) with ht(P) > 1, and let aP ∈ P•. Let p1, . . . , pr be the divisorial
prime ideals of D[H] that contain aP. By prime avoidance, there exists an element
bP ∈ Pr (p1 ∪ . . . ∪ pr). Let XP ∈ {. . . , X−1, X0, X1, . . .} be such that XP is not
contained in the support of aP or bP. Then D[H] = R0[XP] with R0 = D[H0][{Xi |
i ∈ Z, Xi 6= XP }] and aP, bP ∈ R0 are coprime. Hence fP = aPXP + bP is a prime
element of D[H], and fP ∈ P. By construction, fP /∈ D[H0].
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Let Q = { fP | P ∈ spec(D[H]), ht(P) > 1 } and let S be the multiplicative
set generated by Q. Since spec(S−1D[H]) is in bijection with { p ∈ spec(D[H]) |
p∩ S 6= ∅ }, it follows that S−1D[H] is a Krull domain of dimension at most 1, i.e.,
a Dedekind domain. Moreover, S ∩D[H0] = ∅.

If D[H0] is not a field, then neither is S−1D[H]. It only remains to consider the,
degenerate, special case where D[H0] is a field, i.e., H0 is the trivial monoid and
D = K is a field. Then D[H] = K[. . . , X−1, X0, X1, . . .] is a polynomial ring in
countably many indeterminates. By construction, Q only contains elements with
Xi-degree equal to 1 for some i ∈ Z. However, D[H] contains prime elements which
are not of this form (e.g., X2

1 +X2
0X1 +X0).

(2) If P ∈ spec(D[H]) with ht(P) > 1, then also ht(ϕ(P)) > 1. Thus ϕ induces a
permutation of prime ideals of height greater than 1. Denote a set of representatives
for the orbits by Ω. For each P in Ω, choose fP as in (1). For all n ∈ Z, ϕn(fP) is a
prime element contained in ϕn(P). Since ϕ(P ) ⊂ P , we have ϕn(fP) /∈ D[H0]. Set
Q = ⋃

P∈Ω
⋃
n∈Z ϕ

n(fP), and let S be the multiplicative subset of D[H]• generated
by Q. Since ϕ(Q) ⊂ Q, also ϕ(S) ⊂ S. Thus, S has the stated properties.

(3) Since ϕ(S) ⊂ (S−1D[H])×, ϕ extends to an automorphism ϕS of S−1D[H].
Localization induces a bijection between { p ∈ X(D[H]) | p ∩ S = ∅ } and
X(S−1D[H]). Hence S−1D[H] is ϕS-v-simple. Since S−1D[H] is a Dedekind
domain, every ideal is divisorial. Thus S−1D[H] is ϕS-simple. �

Remark 3.11. Most of the technicalities in the previous proof can be avoided as
long as C(H) is non-trivial and we are not picky about whether or not S ∩D[H0] =
∅. In this case, we take S to be the multiplicative set generated by all prime
elements of D[H]. Claborn’s argument shows that each P ∈ spec(D[H]) with
ht(P) > 1 contains some prime element, so that indeed dim(S−1D[H]) ≤ 1. We
have ϕ(S) ⊂ S, since prime elements are mapped to prime elements by ϕ. And,
finally, since C(H) is non-trivial, there must exist a non-principal divisorial prime
ideal p ∈ D[H]. Then p ∩ S = ∅, hence dim(S−1D[H]) = 1.

Theorem 3.12. Let D be a commutative Krull domain and let σ ∈ Aut(D) be such
that D is σ-v-simple. Let H be a reduced commutative Krull monoid containing
prime elements, and let τ be an automorphism of H such that H is τ -v-simple.
Let ϕ : D[H]→ D[H] denote the extension of σ and τ to D[H], that is, ϕ|D = σ
and ϕ|H = τ . Let p ∈ H be a prime element and let pτ = { τn(p) | n ∈ Z } be its
τ -orbit, so that H = H0 ×F(pτ ) for a Krull monoid H0.
(1) There exists a multiplicative subset S of the semigroup algebra D[H] such

that S is generated by prime elements, S ∩ D[H0] = ∅, ϕ(S) ⊂ S, and the
localization S−1D[H] is a Dedekind domain but not a field.

(2) Let S ⊂ D[H]• be a multiplicative subset such that R = S−1D[H] is a Dedekind
domain but not a field and ϕ(S) ⊂ R×. Let A be the subgroup of C(D)×C(H) =
C(D[H]) generated by classes of p ∈ X(D[H]) with p∩S 6= ∅. Then ϕ extends to
an automorphism ϕS of R, the skew Laurent polynomial ring T = R[x, x−1;ϕS]
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is a noncommutative simple Dedekind domain, and the following sequence of
abelian groups is exact:

C(D)× C(H)/A
id−(σ∗,τ∗)

// C(D)× C(H)/A β // G
(
R[x, x−1;ϕS]

)
// 0.

Here, (σ∗, τ∗) is the automorphism of C(D) × C(H)/A induced by σ and τ .
The map β is induced as follows: If a ∈ Fv(D)×, the class of a is mapped to
〈a[H]⊗RT 〉−〈T 〉. If b ∈ Fv(H)×, the class of b is mapped to 〈D[b]⊗RT 〉−〈T 〉.

Proof. (1) Since τ does not have finite orbits on X(H), the orbit pτ of p consists of
countably many non-associated prime elements. Let S be a multiplicative subset
of D[H] as in Lemma 3.103.10(2)(2), where we take P = pσ.

(2) By Theorem 3.93.9, D[H] is ϕ-v-simple. By Lemma 3.103.10(3)(3), ϕ extends to
an automorphism ϕS ∈ Aut(R), and R is ϕS-simple. By Nagata’s Theorem and
the identifications we have made, C(D)× C(H)/A ∼= C(R) with the isomorphism
given by ([a]D, [b]H) + A 7→ [S−1a[b]]. Since R is ϕS-simple, T = R[x, x−1;σ]
is a noncommutative simple Dedekind domain by Proposition 2.42.4. Under the
identification of C(D)×C(H)/A with G(R), the automorphism (σ∗, τ∗) corresponds
to ϕ∗. The exact sequence of class groups follows from Proposition 2.52.5 and the
discussion that followed it. �

Remark 3.13. The technical condition that H contains a prime element (and hence,
since τ does not have any finite orbits on X(H), infinitely many non-associated ones)
is necessary so that D[H] has the form D[H0][. . . , X−1, X0, X1, . . .] with ϕ acting
by ϕ(Xi) = Xi+1. The countably many indeterminates are used to construct the
prime elements which generate S, see Lemma 3.103.10. (See [Cha11Cha11, Proposition 14]
for a refinement that only needs one indeterminate.) If H does not contain a prime
element, we may replace H by H ′ = H × F(. . . , p−1, p0, p1, . . .) and extend τ by
τ(pi) = pi+1. Then H ′ satisfies the conditions of the theorem, and C(H) ∼= C(H ′).
By formulating the theorem in the slightly more technical way, we avoid the need
to enlarge H if it already contains prime elements.

Proof of Theorem 1.1. We assume without restriction that κ is infinite. Let G be
an abelian group. Theorem 3.43.4 implies that there exist a reduced commutative Krull
monoid with C(H) ∼= G and an automorphism τ of H such that H is τ -v-simple,
τ∗ : C(H) → C(H) is the identity, and each divisorial ideal class of H contains κ
nonempty divisorial prime ideals. We may moreover assume that H contains at
least two distinct τ -orbits of prime elements. Let K be a field. Then K is simple,
and hence idK-v-simple. Let ϕ : K[H]→ K[H] be the automorphism of K[H] with
ϕ|H = τ and ϕ|K = idK . Let P ⊂ H be a countable set of prime elements such
that τ(P ) ⊂ P and H r P still contains κ prime elements. Then H = H0 ×F(P )
with a Krull monoid H0. Each class of C(H0) contains κ divisorial prime ideals.
Applying Theorem 3.123.12, we find a subset S ⊂ K[H] such that S ∩ K[H0] = ∅,
the localization R = S−1K[H] is a commutative Dedekind domain but not a field,
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and T = S−1K[H][x, x−1;ϕS] is a noncommutative simple Dedekind domain with
G(T ) ∼= G.

If p ∈ X(H), then K[p] ∈ X(K[H]). If p /∈ { (p) | p ∈ P }, then K[p] ∩ S = ∅ by
construction. In this case, S−1p is a nonzero prime ideal of R. Thus, each ideal
class of R contains at least κ nonzero prime ideals. If q is a nonzero prime ideal of
R, then qT is a maximal right ideal of T by [MR01MR01, Lemma 6.9.15]. Since T is flat
over R, we have qT ∼= q ⊗R T . If p ∈ X(H), the isomorphism β : C(H) → G(T )
maps [p] to 〈K[p]⊗R T 〉 − 〈T 〉. It follows that each class of G(T ) contains at least
κ maximal right ideals. �

Remark 3.14. (1) We can only give a lower bound on the cardinality of maximal
right ideals in each class. Apart from the divisorial prime ideals of the formK[p]
with p ∈ X(H), additional divisorial prime ideals arise from prime elements of
K[q(H)]. In [Cha11Cha11], Chang has shown that if D[H] is a commutative Krull
domain and H is non-trivial, then each divisorial ideal class contains a nonzero
divisorial prime ideal.

(2) A domain D is half-factorial if every element of D• can be written as a product
of irreducibles and the number of irreducibles in each such factorization is
uniquely determined. It is conjectured that every abelian group is the class
group of a half-factorial commutative Dedekind domain. See [Gil06Gil06, §5] for
background. The conjecture is equivalent to one purely about abelian groups
([GHK06GHK06, Proposition 3.7.9]). See [GG03GG03] for progress on this question.

Acknowledgments. I thank Alfred Geroldinger for feedback on a preliminary
version of this paper.
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