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ABSTRACT. A ring has bounded factorizations if every cancellative nonunit a € R
can be written as a product of atoms and there is a bound A(a) on the lengths of
such factorizations. The bounded factorization property is one of the most basic
finiteness properties in the study of non-unique factorizations. Every commutative
noetherian domain has bounded factorizations, but it is open whether such a
result holds in the noncommutative setting. We provide sufficient conditions for a
noncommutative noetherian prime ring to have bounded factorizations. Moreover,
we construct a (noncommutative) finitely presented semigroup algebra that is an
atomic domain but does not satisfy the ascending chain condition on principal
right or left ideals (ACCP), whence it does not have bounded factorizations.

1. INTRODUCTION

Let R be a ring, denote by R*® its submonoid of cancellative elements (non-zero-
divisors), and by R* its group of units. Usually R will be a domain or a prime
Goldie ring, in which case R*® is divisor-closed, that is, every left- or right-divisor
of an element of R® is again contained in R* (see Lemma 2.5 below). A nonunit
u € R*® is an atom (or irreducible element) if it cannot be written as a proper product
of two nonunits in R®*. We say that R is atomic if every nonunit a € R* can be
expressed as a product a = uq - - - ug of atoms uq, ..., up of R®*. The ring R has
bounded factorizations (is a BF-ring) if, in addition, for every a € R* there exists a
A(a) € Ny such that k£ < A(a) for every such factorization of a.

The concept of bounded factorization domains was introduced, in the setting
of commutative domains, by D.D. Anderson, D.F. Anderson, and M. Zafrullah
[AAZ90] and is one of the most basic finiteness notions in the study of non-unique
factorizations (see the recent surveys [Gerl6, GZ20] and in particular [AG21]). Our
restriction to cancellative elements is, to degree, necessitated by the fact that every
monoid having bounded factorizations is at least unit-cancellative (see Lemma 2.2
below).

Chain conditions on (one-sided) ideals are well-known to imply factorization-
related properties: the ring R satisfies the ascending chain condition on principal ideals
(or ACCP) if every ascending chain of principal right ideals eventually stabilizes
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and the same is true for chains of principal left ideals. Every ring satisfying the
ACCP is atomic (in fact, it suffices to have the ACC on principal right, respectively
left, ideals generated by cancellative elements). In particular, noetherian rings are
atomic.

If R is a commutative noetherian domain, then R even has bounded factorizations.
The standard proof of this fact can be found in any of [AG21, Theorem 4.9], [AAZ90,
Proposition 2.2], or [GHKO06, Corollary 1.3.5]. More generally, every v-noetherian
commutative cancellative monoid has bounded factorizations. This can be proved
analogously to the case of noetherian domains [GHKO06, Theorem 2.2.9]. A different
proof can be obtained by first showing that every v-noetherian commutative
cancellative monoid has finite w-invariant [GHO8, Theorem 4.2], which immediately
implies the claim [GHO8, Lemma 3.3(3)]. These results raise the question whether
such an implication still holds for noncommutative noetherian domains, or more
generally, noncommutative noetherian prime rings. The proofs of the commutative
setting do not carry over to the noncommutative one, because all of them make
use of localizations or prime ideals in ways that do not generalize.

In the present paper we therefore seek sufficient conditions for a noncommutative
noetherian prime ring to have bounded factorizations. We show that a noetherian
prime ring R has bounded factorizations if it satisfies one of the following conditions:

(1) R has right (or left) Krull-dimension < 1 in the sense of Gabriel-Rentschler
(Proposition 3.1).

(2) R has a filtration Ry C Ry C - -+ with Ry C R* such that the associated graded
ring is a domain (Proposition 3.2).

(3) R is an iterated skew [Laurent] polynomial domain over a commutative or
BF-ring S (Proposition 3.5 and Corollary 3.7).

(4) R is a bounded Krull order (in the sense of Marubayashi or Chamarie; Proposi-
tion 3.8).

(5) R is fully bounded noetherian (FBN) and every nonzero two-sided ideal contains
a nonzero central element (Theorem 4.10). In particular, this holds when R is
a PI ring (Corollary 4.11), with a second proof in this case given in Section 4.1.

(6) R is an affine algebra of quadratic growth (Theorem 5.8).

(7) R is an Auslander-Gorenstein ring (Corollary 6.4). See Examples 6.5 for an
extensive list of rings covered by this class.

(8) R is a prime quotient of a noetherian algebra S over a field, with S having an
Auslander-dualizing complex (Theorem 6.15).

In the first four of these classes the proofs are largely straightforward. For (5)
we make use of the reduced rank and a noncommutative version of the principal
ideal theorem. Extra conditions appearing in the principal ideal theorem are the
cause for the restriction to those FBN rings whose nonzero two-sided ideals contain
a nonzero central element.

For (6) we establish that, if R is not a PI ring and a € R® is a nonunit, then R/aR
has, in a certain sense, linear growth. The crucial part is to establish dim(R/aR) =
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oo. For this, we make use of a theorem of J. P. Bell and A. Smoktunowicz about the
extended center of such algebras [BS10, Theorem 1.2], and a result of Martindale,
asserting that such a ring does not satisfy a linear generalized polynomial identity
(Lemma 5.3).

Finally the proofs of (7) and (8) make use of homological methods. For an
Auslander-Gorenstein ring R, one can define a finitely partitive grade function j
on R-modules (see Section 6.1). Observing j(R/aR) = 1 for all nonunits a € R°®,
allows us to deduce that Auslander-Gorenstein rings are BF-rings.

While many large classes of important rings are Auslander-Gorenstein rings
(such as group algebras of polycyclic-by-finite groups, all known noetherian Hopf
algebras, etc., see Examples 6.5), all Auslander-Gorenstein rings have finite injective
dimension and finite Krull dimension. To overcome these restrictions, for algebras
over a field, A. Yekutieli and J.J. Zhang developed the more general notion of
Auslander dualizing complexes using the machinery of derived categories. For
an algebra R having an Auslander dualizing complex one may again introduce a
grade function (with —j the canonical dimension of A. Yekutieli and J.J. Zhang).
Then —j satisfies Gabber’s Maximality Principle on j-pure R-modules. Using
these properties, we show that if R is a noetherian K-algebra with an Auslander
dualizing complex, and R/I is a j-pure factor ring of R with an artinian classical
ring of quotients, then R/ is a BF-ring (Theorem 6.15). In particular, this applies
to R/P with P a prime ideal of R.

We do not know an example of a noetherian prime ring that does not have
bounded factorizations, and so, in a sense, the basic question, whether every
noetherian prime ring has bounded factorizations, unfortunately remains open.

A different point of view along one which might try to extend the commutative
result is the following: commutative affine domains over fields are noetherian and
therefore have bounded factorizations. Noncommutative finitely generated (or even
finitely presented) algebras need not be noetherian, but one may still ask whether
any finitely presented (atomic) prime ring has bounded factorizations. In Section 7
we construct a semigroup algebra R, such that R is finitely presented over a field
K and such that R is atomic but does not have bounded factorizations (and indeed
does not even satisfy the ACCP).

It is well-known that every domain R that satisfies the ACCP is atomic. While
the converse is not true, the difference is somewhat subtle. (P.M. Cohn, in
[Coh68], somewhat infamously falsely asserted that equivalence holds.) The first
counterexample, a commutative domain that is atomic but does not satisfy ACCP,
was constructed by A. Grams [Gra74]. Further classic constructions are by A. Zaks
[Zak82] and by M. Roitman [Roi93] (who in fact constructed an atomic domain R
such that the polynomial ring R[X] is not atomic). Nevertheless producing simple
examples of atomic domains that do not satisfy the ACCP remains challenging,
even in the commutative setting, with recent contributions by J. G. Boynton and
J. Coykendall [BC19], as well as F. Gotti and B. Li [GL21, GL22].



ON NONCOMMUTATIVE BOUNDED FACTORIZATION DOMAINS AND PRIME RINGS 4

The first example of a semigroup algebra over a field that is atomic but does not
satisfy the ACCP is given in [GL21]. Our construction in Section 7 provides the
first example of a finitely presented semigroup algebra over a field that is atomic
but does not satisfy the ACCP. Of course, such an example is only possible in the
noncommutative setting. Section 7 can be read largely independently of the rest of
the paper.

Acknowledgements. We thank M. Hochster and and R. Heitmann for providing
us with the construction in Example 6.21. The second author is grateful for
the support of Leverhulme Emeritus Fellowship EM-2017-081. The first author
acknowledges support of the NSERC grant RGPIN-2022-02951.

2. PRELIMINARIES

A monoid is a non-empty set H together with an associative operation -: H X
H — H and a neutral element 1. At this point we make no assumption on the
cancellativity of H. By H* we denote the group of units of H. A nonunit u € H
is an atom (or an irreducible element) if u = ab with a, b € H implies a € H* or
b € H*. The monoid H is atomic if every nonunit of H can be represented as
a product of atoms. It is well-known that every cancellative monoid satisfying
the ACC on principal left ideals and the ACC on principal right ideals is atomic
[Smel6, Lemma 3.4] and [Smel3, Lemma 3.1].

The length set of a nonunit a € H is

L(a) ={k € Z>o | a = uy - - up, with atoms uy, ..., ux }.

Trivially L(a) 4+ L(b) C L(ab), and in particular sup L(a) + sup L(b) < sup L(ab) if
these sets are non-empty. For a € H* we set L(a) = {0}. *

If @ € H and |L(a)| > 2 then there exist factorizations a = uy -+ - up = vy -+ - v
with atoms u;, v; € H and [ > k. Then a" = (uy---ug)™(vy---v)""™ for all
0 < m < n, and therefore {mk + (n —m)l : 0 < m < n} C L(a™). Thus
IL(a™)| > n + 1, and so we cannot expect a uniform bound on the length sets of
H (unless |L(a)| <1 for all a € H). We can however hope for the following basic
finiteness property.

A monoid H has bounded factorizations, or in short, is a BF-monoid, if H is
atomic and L(a) is finite for all @ € H. It is half-factorial if [L(a)| =1 for all a € H.

Definition 2.1. Let H be a monoid and let \: H — Z>( be a function.

(1) X is a right length function if A(a) > A(b) whenever a = be with b, ¢ € H and ¢
Is a nonunit.

f H is Dedekind-finite, that is, every left or right divisor of a unit is again a unit, this is a
reasonable and convenient definition and preserves the inequality sup L(a) + sup L(b) < sup L(ab)
also when a or b is a unit. If H is not Dedekind-finite, then this definition is somewhat dangerous,
as a unit may then possibly be also represented as a non-trivial product of atoms. Since we will
soon restrict to (unit-)cancellative monoids, which are always Dedekind-finite, this will not pose
any problem.
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(2) Ais a length function if A(a) > A(b) whenever a = dbc with ¢, d € H and at
least one of ¢, d is a nonunit.

(3) A is a superadditive length function if
(i) A(ab) > A(a) + A(b) for all a, b € H; and
(ii) A(a) = 0 implies a € H*.

Every superadditive length function is a length function, and every length
function is a right length function. If H is a commutative monoid, then \: H — Nj
is a length function if and only if it is a right length function. It is classical
that a commutative cancellative monoid is a BF-monoid if and only if it has a
length function [GHKO06, Proposition 1.3.2]. This equivalence is extended to a
noncommutative and possibly non-cancellative setting by Fan and Tringali in [FT18,
Corollary 2.29] using the notion of a length function as defined above. For our
purposes it will usually be more convenient to work with right length functions.
Our first goal, in Theorem 2.3, is to show that the existence of any of these types
of length function is equivalent to H having bounded factorizations.

A monoid H is unit-cancellative if ¢ = au or a = wa with a, v € H implies
u € H*. Every cancellative monoid is unit-cancellative. In a unit-cancellative
monoid, every left [right] invertible element is invertible: if uv = 1 then wvu = u
and hence vu € H*. Hence u also has a left inverse. In particular, any right or left
divisor of a unit is itself a unit.

Lemma 2.2. Let H be a monoid with right length function X.

(1) Ifay, ..., ax € H with k > 0 are nonunits, then X(ay - - - ax) > k. In particular,
if a € H is a nonunit, then \(a) > 0.
(2) H is unit-cancellative.

Proof. (1) By induction on k. If & = 0 then a;---a; = 1 (the empty product)
is a unit, and the claims hold trivially. Suppose & > 1. Then A(aj---a;) >
)\((11 B 'Ckal) Z k—1.

(2) Suppose a = ab with b a nonunit. Then A(a) > A(a), a contradiction. Suppose
now a = ba with b a nonunit. Then « is also a nonunit and a = b*a for all k£ > 0.
It follows that A(a) > A(b¥) > k for all & > 0, a contradiction. O

The following characterization extends [FT18, Corollary 2.29] by superadditive
length functions and right length functions. We give a full proof for the convenience
of the reader.

Theorem 2.3. Let H be a monoid. The following statements are equivalent.

a) H has a superadditive length function.
) H has a length function.

) H has a right length function.

) H is a BF-monoid.

(e) One has N,so(H ~ H*)" = 0.

(
(b
@
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If these conditions are satisfied, then H is unit-cancellative.

Proof. (a) = (b) = (c) is clear.

(¢) = (d) Let A\: H — Z>( be a right length function. Lemma 2.2 implies
maxL(a) < A(a) for all @ € H. We must still show that H is atomic. Let
a € H~ H*. We proceed by induction on A(a). If A(a) = 0 then a is a unit by (1)
of Lemma 2.2 and there is nothing to show. Suppose A(a) > 0. If a is an atom,
we are done. If a is not an atom, then a = byc; with nonunits by, ¢; € H and
A(b1) < A(a). By induction hypothesis b; is a product of atoms. If ¢; is an atom
we are done. Otherwise ¢; = bycy with nonunits by, co € H. Since A(b1by) < A(a),
again byby is a product of atoms. Continuing this process, we find

a:bl-ubkck (1)

with by, ..., by, ¢ € H~ H*. Since A(a) > A(by---bx) > k, this process must
terminate at some point, which means that eventually ¢, must be an atom. But
then Eq. (1) can be refined into a representation of a as a product of atoms, as
by - - - by is a product of atoms by induction hypothesis.

(d) = (e) By contradiction. Let a € N,>o(H ~ H*)". Thus, for every n > 0
there exist ay, ..., a, € H~ H* such that a = a; ---a,. Since H is atomic, each
a; can be expressed as a product of atoms and therefore sup L(a) > n.

(e) = (a) Due to the stated condition we may define A\: H — Z>q by A(a) =
max{n >0:a¢€ (H~ H*)"}. Then X is a superadditive length function.

That H is unit-cancellative follows from (c) together with Lemma 2.2. O

Clearly (¢) may equivalently be replaced by a left length function.

Let (H;)ier be a family of monoids. The restricted product [[c; H; is the
submonoid of [;c; H; consisting of all («;)ics € [Tier H; satisfying «; € H for all
but finitely many ¢ € I. For a monoid H, the submonoid of cancellative elements
is denoted by H*® and its center by Z(H). An intersection H = (;c; H; of monoids
(in some common overmonoid @) is of finite type if every a € H is a unit in all but
finitely many of the H;.

Lemma 2.4. (1) Let H and D be monoids and let p: H — D be a monoid
homomorphism with o~*(D*) = H*. If D is a BF-monoid, then so is H.

(2) If H C D are monoids such that H N D* = H* and D is a BF-monoid, then
H is a BF-monoid.

(3) If H is a BF-monoid, then so are H® and Z(H).

(4) Restricted products of BF-monoids are BF-monoids.

(5) Let H C Q be monoids, and let H = (;c; H; be an intersection of finite type
with overmonoids H C H; C Q. If each H; is a BF-monoid, then so is H.

Proof. (1) Let A\: D — Z>q be a right length function. Let a, b, ¢ € H such that
a = bcand ¢ ¢ H*. Then ¢p(a) = ¢(b)p(c). By assumption ¢(c) ¢ D*, and
hence A(p(a)) > A(p(b)). Thus Ao ¢ is a right length function on H, and H is a
BF-monoid.
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(2), (3) Apply (1) to the inclusions H < D, H®* < H, respectively, Z(H) — H.

(4) Let H = [I;c; H; with each H; a BF-monoid. Let a = (®)ier € H be a
nonunit and let I' = {i € I | oy ¢ H }. Then I’ is finite. Let a = ay---a, € H
with a; € H nonunits and a; = (a;;)ier. For each j € [1, k| there exists an ¢ € [
with a;; ¢ H;. Because each H; is unit-cancellative, even i € I’. We conclude
k <3crmaxLly,(a;).

(5) Let a € H. If a € H) for all i € I, then also a™! € H and hence a € H*.
Thus the embedding H — [];.; H; satisfies the property required in (2). U

The submonoid of cancellative elements and principal one-sided ideals.
As we have seen any BF-monoid is necessarily unit-cancellative. We therefore
restrict our attention to the submonoid of cancellative elements H® of H. Here an
issue appears that needs some discussion: the factorizations of an element a € H*®
considered within H*® may differ from the factorizations of the same element as
considered in H, because not every divisor of a needs to be cancellative. However,
under reasonable conditions this is the case.

Let S C H be a submonoid. The submonoid S is right saturated in H if, for all
a, b€ S and ¢ € H with a = bc it follows that ¢ € S. It is divisor-closed if, for all
a € S and b, c € H with a = bc it follows that b, ¢ € S. The submonoid S C H is
a right Ore set if aSNOH # () for alla € H and b € S.

Lemma 2.5. (1) Let H be a monoid. If H is cancellative or H® is a right Ore
set, then H® is right saturated in H.
(2) If R is a domain or a prime Goldie ring, then R® is divisor closed in R.

Proof. (1) If H is cancellative, then H = H*® and the claim holds trivially.

Suppose that H® is a right Ore set in H. Let a, b € H® and let a = bc with
c€ H. If z, y € H such that cx = cy, then ax = bcx = bey = ay, and hence x = y.
Let xz, y € H with xc = yc. There exist i’ € H and @' € H® such that ab’ = ba'.
Then ba’ = ab’ = beb'. Since b € H®, we get a’ = ¢b'. Then zd' = zcb = ycb’ = ya’
and ¢’ € H® imply = = y. Hence ¢ € H®.

(2) If R is a domain, the claim again holds trivially, so suppose that R is a prime
Goldie ring. Then a € R® if and only if aR is an essential right ideal of R, if and
only if Ra is an essential left ideal of R. If a € R® and a = bc with b, ¢ € R, then
aR C bR and Ra C Rc imply b, c € R®. O

If H* C H isright saturated, there is a natural relationship between factorizations
of elements of H® and chains of principal right ideals of H, generated by cancellative
elements. For a € H*, let [aH,H] = {bH : b € H*, aH C b H C H}. If
a = uq ---u, with atoms uq, ..., up € H®, then

al Cuy---up1H - Cuyugd CunH C H

is a finite maximal chain in the poset [aH, H]. Conversely, every finite maximal chain
in [aH, H] gives rise to a factorization of a into atoms of H*. Two factorizations
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correspond to the same chain if and only they are equal up to the insertion of units
(for a formal treatment see [Smel6, Sections 3.1-3.2]).
From this point of view we see (again assuming that H* C H is right saturated):

(1) H*® is atomic if and only if [aH, H] contains a finite maximal chain for all
ac H°.

(2) H* has bounded factorizations if and only if, for every a € H®, there exists a
bound A(a) on the length of finite maximal chains of H.

(3) H* is half-factorial if and only if every [aH, H] has a finite maximal chain and
all finite maximal chains have the same length.

If [aH, H] contains only a finite, but nonzero, number of finite maximal chains,
then H*® has finite factorizations; see [BHL17] for a sufficient condition in the
noncommutative setting.

By the Jordan-Hoélder theorem for modular lattices, we obtain the following.

Lemma 2.6. If H® is atomic and [aH, H] is a modular lattice for all a € H®, then
H* is half-factorial.

Proof. Atomicity guarantees the existence of at least one finite maximal chain
of some length n. By Jordan-Holder (or the Schreier refinement theorem) every
maximal chain has the same length n. U

Remark 2.7. The study of factorizations in the presence of non-cancellative elements
causes additional issues, already in the setting of commutative rings and monoids
[AVLI6, AVLI7]. Recent instances of non-cancellative monoids where factorizations
have been studied are [FT18, BGR20, CT21, GK22, BG22]. In a ring with zero-
divisors the correspondence between factorizations, as products of atoms, and
maximal chains of principal right ideals breaks down. Facchini and Fassina [FF18]
pursue the interesting approach of taking the latter concept, i.e., a maximal chain
of principal right ideals, as the definition of a factorization.

Rings. As we have seen in Theorem 2.3, for (R~ {0}, -) to be a BF-monoid, it has
to be unit-cancellative. In practice, this condition is too restrictive for the classes
of rings that we are interested in.

For this reason we restrict our attention to the submonoid of cancellative elements
R*®, and make the following definition. We will mostly be interesting in prime rings
and domains, where this set is “large”.

Definition 2.8. A ring R has bounded factorizations (BF), or is a BF-ring, if the
monoid of non-zero-divisors R* is a BF-monoid.

3. BASIC SUFFICIENT CONDITIONS FOR BF

In this section we give some basic conditions that guarantee that a ring has BF
(in the noncommutative setting).
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3.1. Small Krull dimension.

Proposition 3.1. Let R be a ring. Then each of the following conditions implies
that R is a BF-ring.

(1) R is right artinian.

(2) R is a right noetherian prime ring with rtKdim R = 1.

Proof. (1) By the descending chain condition on principal right ideals, every
cancellative element of R is a right unit. Since R is also right noetherian, every
right unit is in fact a unit. Thus R®* = R* and R is trivially a BF-ring.

(2) Let a € R*. Because R* is right saturated in R, it suffices to bound the
length of a maximal chain in [aR, R]. But since R/aR has finite length by [MRO1,
Lemma 6.3.9], the length of such a chain is bounded by the length of R/aR. O

In (2), setting A(a) to be the length of R/aR, we see that A is a right length
function. In particular, a prime right principal ideal ring is always a BF-ring. (More
specifically, it is even similarity factorial, see [SmelG, Section 4.1].)

3.2. Filtered and graded rings.

Proposition 3.2. Let R be a filtered ring with a filtration Ry C Ry C --- such
that Ry C R* and gr R is a domain. Then R is a BF-domain.

Proof. For a € R~ {0} define A(a) = min{i € Z>o : a € R; }. The fact that gr R
is a domain is equivalent to: for all a € R, \ R;_y and b € R; \ R;_1, with 4, j > 0,
one has ab € R;y; \ Rij—1 (with R_; = 00). We conclude that A(ab) = A(a) + A(b)
for all a, b € R~ {0}. Thus X\ is a superadditive length function and R is a
BF-domain. O

Corollary 3.3. Universal enveloping algebras of Lie algebras over fields are BF-
domains.

Proof. By the Poincaré-Birkhoff-Witt theorem, every such algebra has an associ-
ated graded ring that is a commutative polynomial ring over the base field. (I

Before discussing skew polynomial rings, we note the following easy lemma.

Lemma 3.4. Let R be a ring. If there exists a € R* ~ R*, x € R®, and ¢ € R*
such that ax = xe, then R does not satisfy the ACC on principal left ideals. In
particular, the ring R is not left noetherian.

Proof. Clearly Rax C Rx. If Rax = Rx, then x = rax for some r € R. Cancella-
tivity of x implies 1 = ra. Then a = ara and cancellativity of a implies ar = 1,
in contradiction to a ¢ R*. Thus Rre = Rax C Rx. Hence there is an infinite
ascending chain

Rr C Rre ' C Raze > C---C R. O

Proposition 3.5. Let S be a BF-domain. Then each of the following rings is a
BF-domain.
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(1) The skew polynomial ring S|x; o, 8] where o is an injective endomorphism of S
such that o(a) € S* implies a € S*, and § is a o-derivation.
(2) The Laurent polynomial ring S[z*'; o] where o is an automorphism of S.

Proof. (1) Since S is a BF-domain, the function pu: S® — Z>g, a — maxL(a) is a
superadditive length function. For 0 # f = 3" x'a; with a; € S and a,, # 0, we
define A(f) = deg(f)+pu(a,). Suppose that f = gh with h & R*. Let g = S5, 2'b;
with b; € S and by # 0; and let h = Zﬁzo xic; with ¢; € S and ¢; # 0.

Then k + 1 =n and a, = o' (by)c.

We have k < n and, since p is superadditive, u(o'(by)) < p(a,). Since h is a
nonunit, either k& < n or ¢; is a nonunit. In the second case, u(co' (b)) < p(ay).
By our assumption on R, nonunits are mapped to nonunits under o, and hence
pu(br) < pu(o' (br))-

Thus

Ag) =k + pu(by) < k+ p(o'(br)) < 1+ p(an) = A(f).

Hence X is a right length function.

(2) Again, let pu: S* — Z>p, a — maxL(a) be a superadditive length function
for S*. If 0 # f = Y0, 2'a; € S[z*!; 0] with m < n and a,, a,, # 0, we define
w(f)=n—mand f_ = a,,. We show that A\(f) = w(f) + u(f_) is a right length
function.

Suppose that f = gh with h ¢ R*. Since f_ = o'(g_)h_ for some [ € Z, we find
u(f) > m(o'(g) + plh_) = plg-) + p(h_).

Now either p(h-) > 0 or w(h) > 0. In the second case, clearly w(f) > w(g).
Hence, in either case, A\(f) > A(g). O

By Lemma 3.4 if the skew polynomial ring R = S|x; 0, d] is noetherian (which is
really the case we are interested in), the additional condition on ¢ is automatically
satisfied.

We briefly summarize how various algebraic properties pass between skew [Lau-
rent| polynomial rings and their base rings.

Lemma 3.6. Let S be a ring.

(1) Let R = S[z;0,d] with o an endomorphism of S and § a o-derivation.
(7) If R is right noetherian, then S is right noetherian.
(i) If R is a domain, then S is a domain and o is injective.
(@ii) If o is injective and S is a domain, then R is a domain.
() If o is an automorphism and S is right [left] noetherian, then R is right
[left] noetherian.
(v) If R is noetherian domain, then o(a) € R* implies that a € R*.
(2) Let R = S[a*Y; 0] with o an automorphism of S.
(i) R is right [left] noetherian if and only if S is right [left] noetherian.
(it) R is domain if and only if S is a domain.
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Proof. Most of these are obvious or well known; we just discuss (i), (ii) and (v)
of (1).

Since R is a free right S-module, it is faithfully flat. Thus the lattice of right ideals
of S embeds into the lattice of right ideals of R. Hence, if R is right noetherian, so
is S.

Suppose R is a domain. Clearly S is a domain. Assume there exists 0 # a € S
such that o(a) = 0. Since S is a domain, 0 # a?. Since 6(a?) = ad(a), we have
a*z = ad(a), and hence a(ax — §(a)) = 0. Thus a is a zero-divisor.

For (v), note that by (ii) o is injective and so if o(a) € R*, then a € R*. Now
since R is noetherian, by Lemma 3.4, a € R*. O

Corollary 3.7. If R is a noetherian iterated skew |[Laurent] polynomial domain
over a commutative or a BF ring S, then R is BF.

Proof. By Lemma 3.6(1), S is noetherian. So in case S is commutative it is BF,
see [GHKO06, Corollary 1.3.5] or Proposition 6.20. Now Lemma 3.6(1)(v) and
Proposition 3.5(1) give us the result. O

3.3. Multiplicative ideal theory. In the study of non-unique factorizations in
the commutative setting, Krull monoids and domains take a central role, and they
are BF, as they are v-noetherian (see [GHK06, Theorem 2.2.9] for the result, and
Chapters 2.3 and 2.10 of the same monograph for additional context on Krull
monoids and Krull domains).

There are several definitions of Krull orders in the noncommutative setting
[JW84], and they are generally equivalent for prime PI rings [JW84, Theorem 1.4].
The definitions by Chamarie [Cha81] and by Marubayashi [Mar75, Mar76, Mar7§]
agree for bounded prime Goldie rings, and appear to be the most common ones
(see also the survey [AM16] and Chapter 2.2 of the monograph [MVO12]). For
these Krull orders we have the following.

Proposition 3.8. Bounded Krull orders are BF-rings.

Proof. By [Smel3, Corollary 5.30] and the remark following it.

Alternatively, a bounded Krull order R is an intersection of finite type of local
prime principal ideal rings [AM16, Theorem 3.3] 2. Prime principal ideal rings
have BF by Proposition 3.1. The claim follows from (5) of Lemma 2.4, applied to
R*. O

Remark 3.9. (1) In the setting of semigroup algebras, typically a prime Goldie ring
is called a Krull order if it is a maximal order and satisfies the ascending chain
condition on divisorial (two-sided) ideals (see [JO07, p.56] or [Oknl6, p. 256]).
As already mentioned, when one restricts to the setting of prime PI rings, this
coincides with the other notions of Krull orders. In general, Krull orders in the
sense of Chamarie are Krull orders in the sense of [JO07]. However, for the

2Here, and in [AM16], a ring S is local if S modulo its Jacobson radical is simple artinian.
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latter, it is still open whether every divisorial prime ideal is localizable or not,
which poses an obstacle to the development of a smooth structure theory for
such orders. We refer to the remark after [AM16, Proposition 3.10] for more
details and further references.

(2) In [Gerl3] a noncommutative version of Krull monoids, originally introduced
by Wauters, is studied. If H is such a Krull monoid and every nonunit a € H is
contained in a divisorial prime ideal, then H is a BF-monoid [Gerl3, Theorem
6.5].

3.4. Centers. It is well-known that the center of a noetherian ring need not be
noetherian. Even noetherian prime PI rings need not have noetherian center. The
weaker v-noetherian property does pass to the center, and allows us to show that
the center of a noetherian prime ring has BF, as follows.

Let H be a monoid for which H* is a right Ore set, and denote by @) = Q(H) the
right quotient monoid of H by H®. For X C H define (H:;; X) ={¢e€ Q| ¢X C H}
and (H:, X) ={q € Q| Xq C H}. A right ideal I of H is a right H-ideal if
I'NnH* # (. We define Iy, = I, = (H:(H:I)) and call I divisorial if I = I,.
The monoid H is right v-noetherian if it satisfies the ascending chain condition on
divisorial right H-ideals. (These notions are developed in detail in the context of
noncommutative monoids in [Smel3, Section 5], but go back to work of Asano and
Murata [AM53].)

The following is basically well-known; e.g. it is analogous to [MRO1, Proposition
5.1.10(a)].

Lemma 3.10. If H is right v-noetherian, then Z = Z(H) N H*® is v-noetherian.
In particular, Z is a BF-monoid.

Proof. The monoid Z is commutative and cancellative.
Let I = Iz, € Z be a divisorial Z-ideal. We claim (IH)py, N Z = I. The
inclusion “27” is trivial. To show “C” it suffices to show

(H:, (Hy1)NZ C(Z:(Z:1)).

where the colon ideals are taken in Q(H) on the left and in Q(Z) on the right.
Let x € Z be such that (Hyl)x C H. Then (Z:1)xt C HNQ(Z) C Z. Thus
x € (Z:(Z:1)), as claimed.

Thus, since H is right v-noetherian, so is Z. Hence Z is a commutative cancella-
tive v-noetherian monoid, and therefore has BF [GHK06, Theorem 2.2.9]. O

Proposition 3.11. Let R be a right v-noetherian prime ring. Then Z(R) is a
BF-domain. In particular, if R is a prime right noetherian ring, then Z(R) is a
BF-domain.

Proof. The first claim follows from Lemma 3.10, and the second from the fact that
right noetherian rings are right v-noetherian. U
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4. FBN RINGS WITH ADDITIONAL ASSUMPTIONS

In this section we consider prime fully bounded noetherian (FBN) rings in which
every nonzero ideal contains a nonzero central element. In particular, this class
includes all noetherian prime PI rings [MR01, Theorem 13.6.4 and Corollary 13.6.6].
We give a second (different) proof for noetherian prime PI rings in Section 4.1. We
recall that factor rings of FBN rings are FBN rings [GW04, Exercise 9G].

We define a slight variation of the reduced rank. Let R be a semiprime right

Goldie ring, and let P, ..., P, denote the pairwise distinct minimal prime ideals
of R. The semisimple right quotient ring @) = Q(R) decomposes as @ = B ; Q;
with Q; = Qe; and ey, ..., e, central idempotents of ). Each R/P; is a prime

Goldie ring with Q(R/P;) = @; a simple artinian ring.

For a right R-module M, we define vp, (M) € Z>oU {0} to be the length of the
Q;-module M/MP; ®p/p, Q;. This is the same as the reduced rank of the R/P;-
module M /M P;. Alternatively, since M/MP; = M ®g R/P; and R/P; ®g/p, Qi =
Qi = Q ®¢q Q;, we see that vp, (M) counts the multiplicity of the unique simple
(Q;-module in the semisimple @)-module M ®pz Q.

Lemma 4.1. Let R be a semiprime right Goldie ring and P a minimal prime ideal
of R.

(1) The map vp: Mod- R — Z>o U {0} is additive on short exact sequences.

(2) vp(M) =0 if and only if M/MP is an R/P-torsion module.

Proof. (1) Let 0 — A — B — C — 0 be a short exact sequence. Since Q)
is flat, tensoring with it preserves the short exact sequence.
(2) Clear. O

Lemma 4.2. Let R be a right noetherian ring with prime radical N, a minimal
prime ideal P, and let M be a right R-module. If M = My 2 M; 2 My D --- D
My, =0and M = MDD M 2D M;D--- DM =0 are chains of submodules such
that M;N C M1 and M{N C M] , for alli, then

> v (Mi/Miy) =Y vpn (M]/M],,).

i=1 i=1
Proof. The additivity of vp/y implies that the value of either sum is unchanged
under refinement. The Schreier Refinement Theorem allows the chains to be refined
to equivalent ones, which yields the desired conclusion. (This proof is the same as
the one in [GW04, Lemma 11.1] for the reduced rank.) O

Definition 4.3. Let R be a right noetherian ring, P a minimal prime ideal of R,
and N the prime radical of R. For a right module M, we define vp (M) using the
formula in Lemma 4.2. (Since N is nilpotent, M O MN D MN? D ... D0 shows
the existence of a chain as required.)

Remark 4.4. The reduced rank of M is > pvp(M) where the sum runs over all
minimal prime ideals of R.
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In [Jat75], Jategaonkar introduces a similar valuation for annihilators of the
factors of a critical composition series of M. He shows that the valuation is additive
for dominant primes, these being the ones minimal among all the annihilator
primes of the critical composition series of M. The minimal primes over ann(M)
are precisely the dominant primes, so that we can recover Jategaonkar’s valuations
for dominant primes by considering M as an R/ann(M) module.

If M is a right R-module with A = ann(M) and P is a prime ideal minimal over
A, then the expression vp/4(M), interpreted in R/A makes sense, since P/A is
minimal in R/A. The following lemma shows that we may replace A by a smaller
ideal B C A, while preserving vp/g(M) = vp/a(M), as long as P remains minimal
over B. We will make use of this refinement later on.

Lemma 4.5. Let R be a right noetherian ring and M a right R-module. Let
further A = ann(M) and let B an ideal of R and P a prime ideal of R such that
B C AC P and P is minimal over B. (Then P is also minimal over A.) Then

VP/A(M) = VP/B(M)a
where the left side is computed in the ring R/A and the right side in R/B.

Proof. Let N be the prime radical of B. Because R/B is right noetherian, there
exists n > 1 such that N® C B C A. Consider the chain of R-modules

MDMNDMN?D.---DMN"=0.

Since M is annihilated by A, the same is true for each factor L; .= MN*"! /M N*
with 1 < ¢ < n. Then

Li®r R/P = L; ®r/a (R/A)/(P/A) = L; ®r/p (R/B)/(P/B),

and of course R/P = (R/A)/(P/A) = (R/B)/(P/B). Thus vp/p(L;) = vp/a(L;)
for all 4. (These expressions make sense, because P is minimal over both A and
B) Fmally VP/A(M) = Z?:l VP/A(Li> = Z?:l VP/B(Li> = VP/B(M). O

We will make use of the following variant of the Principal Ideal Theorem by
Chatters, Goldie, Hajarnavis and Lenagan. They state the result for prime PI
rings, but the same proof works for prime FBN rings as long as every nonzero ideal
contains a nonzero central element. By C(P) we mean the set of all elements a € R
such that a + P € (R/P)".

Proposition 4.6 ([CGHL79, Theorem 4.8]). Let R be a prime FBN ring such that
every nonzero ideal contains a nonzero central element and let a € R*. If P is a
prime ideal minimal over ann(R/aR) and a & C(P), then P has height at most 1.

Corollary 4.7. Let R be a prime FBN ring and assume that every nonzero ideal
contains a nonzero central element. For each a € R*~ R*, there exists a height-one
prime ideal P with ann(R/aR) C P.
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Proof. We follow the argument in [CG86, Theorem 2.2].

Let A = ann(R/aR). Then A is the maximal two-sided ideal contained in aR,
and thus 0 # A C R, where A # 0 because R is bounded and aR is an essential
right ideal by [MRO1, Proposition 2.3.4]. Let N be the prime radical of A. By
[CG86, Lemma 2.1], a € C(N). Thus there exists a prime ideal P minimal over A
such that a & C(P). By Proposition 4.6, the height of P is 1. O

Lemma 4.8. Let R be a right bounded semiprime right Goldie ring. If My, ..., M,
are finitely generated torsion modules, then there exists a nonzero ideal I C R such
that M;I =0 for all i € [1,n].

Proof. For each M;, let m;;, ..., m;; be generators. Choose z;; € R® with
my1%11 = O7 (m172$1’1)$1,2 = 0, ey (mg,lxl,l cee %17]{)1’271 = (0 and so on.

Setting & = &1+ T1 - Tp1 - Tk € R®, we have m; ;o = 0 for all ¢ € [1,n)]
and j € [1,k]. Since R is semiprime right Goldie, zR is an essential right ideal
of R by [MRO1, Proposition 2.3.4]. Since R is right bounded, there exists a right
essential two-sided ideal I C xR of R. If m = m;17m + -+ + mr, € M;, then
mlI C Y mi; I CYF  miaR =0. Thus 0 # I C ann(M;). O

Lemma 4.9. Let R be an FBN ring. If a € R* ~ R* and P is a prime ideal
minimal over A = ann(R/aR), then vpja(R/aR) > 0.

Proof. Let N be the prime radical of A, and let P, = P, P, ..., P, denote the
pairwise distinct minimal prime ideals over A. Set Y = P, N---N P. N R.
Suppose vpja(R/aR) = 0, and let R/aR = My 2 M; 2 --- 2 M, = 0 be
a sequence of submodules with M; N C M;. Then vp/s(M;_1/M;) = 0 for all
i by Lemma 4.1(1), and hence M;_,/(M;_1P + M;) is an R/P-torsion module.
By Lemma 4.8 there exists an ideal X 2 P annihilating all M; ;/(M; 1P + M;).
Noting that Y annihilates (M;_1 P+ M;)/M;, we see that XY annihilates M; /M.
Thus (XY)" € A C N, and hence XP,---P, C N C P,. Thus X C P, a
contradiction. O

Theorem 4.10. Let R be a prime FBN ring and suppose that every nonzero ideal
contains a nonzero central element. Then R is a BF-ring.

Proof. Let X(R) denote the set of height-one prime ideals of R. For a € R* and
A = ann(R/aR) define
Ma)= > vpua(R/aR).

PeX(R)
ACP

We claim that A is a superadditive length function.

Suppose a € R* ~\ R*. Then A = ann(R/aR) # 0, because aR is an essential
right ideal of R, and R is bounded. By Corollary 4.7 there exists a height-one
prime ideal P with ann(R/aR) C P. Since A # 0, the ideal P is minimal over
ann(R/aR). Lemma 4.9 implies vp/a(R/aR) > 0, and hence A(a) > 0. Thus
A(a) = 0 implies a € R*.
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Suppose that a = be with b, ¢ € R® and let B = ann(R/bR) and C' = ann(R/cR).
Since aR = bcR and bcR C bR C R, the modules R/bR and R/cR = bR/bcR
appear as factor, respectively, submodule of R/aR. Thus A C B and A C C. Using
the additivity of vp 4, we find

Ma)= 3 vpu(R/aR) = > (vpa(R/bR) +vpa(R/cR))

PEX(R) PEX(R)
ACP ACP
> > vpa(R/bR)+ Y vpa(R/cR)
PEX(R) PEX(R)
BCP ccp
= Y vpp(R/bR)+ Y vpic(R/cR) = A(b) + Ac).
PeX(R) PeX(R)
BCP ccp
The equalities vp 4 (R/bR) = vp/p(R/bR) for B C P, and the analogous equalities
for R/cR, are justified by Lemma 4.5. O

Corollary 4.11. Let R be a noetherian prime PI ring. Then R is a BF-ring.

Proof. Every noetherian prime PI ring is an FBN ring [MRO1, Theorem 13.6.4].
Moreover, the existence of a central polynomial can be used to show that ev-
ery nonzero ideal contains a nonzero central element [MRO1, Corollary 13.6.6].
Therefore Theorem 4.10 implies the claim. 0

4.1. PI rings. We now give a different proof of Corollary 4.11, that is more in
the spirit of PI theory. A ring extension R C S is finite centralizing, if the module
Sk has a finite set of generators, each of which centralizes R. Finite centralizing
(more generally, finite normalizing) extensions have the lying over property: for
every prime ideal P of R, there exists a prime ideal @ of S with P = @ N R [MR01,
Theorems 10.2.9 and 10.2.4].

Proposition 4.12. If R C S is a finite centralizing extension of PI rings, then
S*NR=R".

Proof. Clearly R* C RN S*, and it suffices to show the other inclusion. Assume
that there exists an a € R ~ R* such that a € S*. Then a is contained in a
maximal right ideal M C R. Let P = ann(R/M). Since P is primitive, it is prime.
By the lying over property, there exists a prime ideal ) of S such that Q N R = P.
Thus R/P < S/Q.

Since a+ P is contained in the maximal right ideal M + P of R/ P, it is a nonunit
in R/P. Since R/P is a primitive PI ring, Kaplansky’s Theorem [MRO1, Theorem
13.3.8] implies that R/P is simple artinian. Thus a + P is a zero-divisor, and since
R/P embeds into S/Q, also a + @ is a zero-divisor in S/Q. It follows that a + @
is a nonunit, and hence a ¢ S*. U

For the remainder of this section, let R be a prime PI ring and K the quotient
field of its center Z(R). Then R has a quotient ring A that is a central simple
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algebra over K. Each a € A induces a K-endomorphism p, of A, given by left
multiplication, x +— ax. The characteristic polynomial of a is the characteristic
polynomial of i,. The norm of a is Ny, i (a) = det(jq).

Let t(R) denote the subring of K generated over Z(R) by all coefficients of
characteristic polynomials of elements of R. The subring T(R) = t(R)R of A is
the trace ring of R [MRO1, §13.9].

Lemma 4.13. We have t(R) = Z(R) if and only if R is integral over Z(R).

Proof. An element r € R is integral over Z(R) if and only if its characteristic
polynomial has coefficients in Z(R). From this the claim follows immediately. [

Lemma 4.14. Suppose that R is integral over Z(R).

(1) Ngjx: A — K is a homomorphism of multiplicative monoids and restricts to
a multiplicative homomorphism Ng/zry: R — Z(R).

(2) a € R is a zero-divisor if and only if Na/k(a) = 0.

(3) a € R if and only if Najk(a) € Z(R)*.

Proof. (1) The norm is multiplicative because the determinant is, and N4,k (1) =
det(id4) = 1. By assumption Ny x(a) € Z(R) for all a € R.

(2) a € R is a zero-divisor if and only if it is a nonunit in A. However, this is
clearly equivalent to p, not being an isomorphism, that is, to N4, x(a) = 0.

(3) Let a € R. If a € R*, then (1) implies Ng/z(r)(a) € Z(R)*.

Suppose Ng/zr)(a) € Z(R)*, and let X" + a,_1 X" ' + .-+ ao with a; € Z(R)
denote the characteristic polynomial of a. By the Cayley-Hamilton Theorem,
PP+ Qi+ 4 ag = 0 in Endg (A). Thus

(™" gy e = —ap € Z(R)”.

We conclude that p, is also invertible as an element of Endz ) R. Since R embeds
in Endz gy R, it follows that a € R*. O

Second proof of Corollary 4.11. Suppose first that R is integral over its center.
Then Z(R) is a BF-domain by Proposition 3.11, and Lemma 4.14 implies that
Najk: R* — Z(R)® is a monoid homomorphism satisfying that Na/k(a) € Z(R)*
implies @ € R*. Thus maxL(a) < maxL(Na/k(a)).

In the general case we now reduce the question to the trace ring T'(R). Since
R is noetherian, so is T'(R) [MRO1, Proposition 13.9.11]. Since R and T'(R) are
equivalent orders in the quotient ring A [MRO1, Corollary 13.9.7], the ring T'(R) is
also a prime PI ring. Moreover, T'(R) is integral over ¢(R). Since t(R) C Z(T(R)),
the ring T'(R) is also integral over its center. Thus T'(R) is a BF-ring by the case
we have already established.

The right R-module T'(R)g is finitely generated [MRO1, Proposition 13.9.11],
so there exist t1, ..., t, € t(R) that generate T(R)r. Thus T(R) is a finite
centralizing extension of R. Proposition 4.12 implies R* = T(R)* N R, and hence
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(2) of Lemma 2.4 applied to R* < T'(R)*® implies that R is a BF-ring. (Note that
R*=A*NR=T(R)*NR.) O

FExample 4.15. Let K be a field, and suppose that R is a prime PI ring that is an
affine K-algebra, but not necessarily noetherian. Then T'(R) is a noetherian ring
[MRO1, Proposition 13.9.11]. However, in this setting the BF-property does not
necessarily descend to R. Consider [MRO1, Example 13.9.9]: Let

S = @[$7y7y—1] and R = <§ Q[yff— l‘S) - MQ(S)

Then R is an affine Q-algebra [MRO1, §10.2], and
S xS
T(R) = (s S)

is noetherian. The conclusion of Proposition 4.12 does not hold for R C T'(R), for
instance

(é 2) € (T(R)* N R) ~ R*.

Moreover R is not atomic (and therefore not a BF-ring). To see this, consider
elements of the form

A= (‘CL ;Z) €R witha, b, c,de S and det(A) # 0. (2)

Then det(A) ¢ S* implies A € T'(R)*, and hence A ¢ R*. From det(A) # 0 we
get A € R* C M,(S)*. The obvious factorization

10 a xb
A= (0 y) <0y1 xdy1>

shows that A is not an atom.

Suppose
_[a J]bl a9 J]bg
A= <C1 dl) (CQ d2>’

Aq Ao

with a;, b;, ¢; € S, and d; € Q[y| + xS for i € {1,2}. Then d; € xS or dy € xS
as xd = xc1by + didy € xS. Thus one of the A; is again of a form as in Eq. (2).
Repeating this argument recursively, we see that every representation of A as a
product of nonunits must contain some factor B that is of the form as in Eq. (2).
However, then B is not an atom, and therefore the ring R is not atomic.
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5. ALGEBRAS OF QUADRATIC GROWTH

Throughout this section, let R be an affine prime algebra over a field K and
let GKdim(R) denote the Gelfand-Kirillov-dimension of R. Then it is well-known
that GKdim(R) € {0,1} URss (see [KLO00]). If GKdim(R) = 0, then R is finite-
dimensional, in particular artinian, and therefore has BF. If GKdim(R) = 1, then a
theorem of Small and Warfield shows that R is prime noetherian PI [SW84, SSW&5],
and therefore R has BF by Corollary 4.11. Thus GKdim(R) = 2 is the smallest
remaining case. In the following we deal with the case of R having quadratic
growth. If R has quadratic growth, then GKdim R = 2, but the converse is not
true in general.

Recall that a frame is finite-dimensional vector subspace V' C R containing 1
and a generating set of R. The algebra R has quadratic growth if there exists a
frame V and constants ¢, co € Ry such that ¢;n? < dim V" < ¢yn? for all n > 1.

By [Bel09], an affine simple Goldie K-algebra of quadratic growth is noetherian
and has Krull dimension 1. Thus Proposition 3.1 applies, and such algebras are
BF-rings. We now consider affine noetherian prime algebras of quadratic growth,
that are not necessarily simple. Since the PI case is covered by Corollary 4.11, we
will eventually further restrict to non-PI algebras.

Lemma 5.1. Let S be a noetherian prime ring, and let a € S® be a nonunit. Then

S n () d"s=0.

k>0

Proof. Suppose not, and let b € N> a* R with b cancellative. Then, for every k > 0,
there exists a ¢; € R such that b = a¥c,. Cancellativity of a implies ¢, = acp1.

Since b is cancellative, so is each of the ¢;. Thus Scy C -+ C Scp © Scgy1 € -+ is
an infinite ascending chain of principal left ideals, in contradiction to S being left
noetherian. ([l

Definition 5.2. An element a € R® is an almost unit if dimyg R/aR < oo.

If a, b € R® are almost units, then R O aR O abR and aR/abR = R/bR
show dim R/abR = dim R/aR - dim R/bR. In particular, the almost units form a
submonoid of R®.

We will proceed to show that in the setting of interest to us, every almost unit is
in fact a unit (Lemma 5.4 below). To do so, we need to use a result from the theory
of generalized polynomial identities (GPIs). To avoid unnecessary technicalities
(since we will assume that R is noetherian later on), assume that R is a Goldie
ring, so that it has a classical quotient ring. Let @ = Q(R) be the quotient ring
of R and let Z = Z(Q) be its center. We consider elements of the free product
(coproduct) @ xz Z[T] of the Z-algebras @ and Z[T'] as generalized polynomials.
In this ring, coefficients from () do not in general commute with the indeterminate
T, but elements of Z do commute with T". More specifically, we will only deal with
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linear generalized polynomials, that is, elements of the form
k
Zaszz with a;, bz S Q
=0

The Z-vector space of linear generalized polynomials is isomorphic to Q) ®z @) via
SF o a;Th; — ¥ a; @ b; (see [BMM96, Remark 6.1.1]). A reference for GPIs is
[BMM96].

The following result was proven by Martindale [Mar69, Theorem 2|. Another
reference is [BMM96, Corollary 6.1.3], noting that the expression below corresponds
to a nonzero generalized polynomial identity.

Lemma 5.3. Let S be a prime Goldie ring, Z = Z(Q(S)) its extended center, and
let ay, ..., ay, by, ..., b, € 5 be such that ay, ..., a, are Z-linearly independent

and by # 0. Then
i=1
for some x € S.

For the remainder of the section, let R be an affine noetherian prime ring of
quadratic growth that is not PI.

Lemma 5.4. Fvery almost unit in R is a unit.

Proof. Suppose that a € R* . R* with dimyx R/aR < co. Since a is not a unit, it
is not algebraic over K. By a theorem of Bell and Smoktunowicz [BS10, Theorem
1.3], the element a is also not algebraic over the extended center Z = Z(Q), where
@ = Q(R) is the quotient ring of R.

Let V' C R be a finite-dimensional K-vector space such that R = V @k aR.
Since aR = R as right R-modules, we have R = 7" a'V @ a"R for all n > 0.
Writing vy, ..., v, for a K-basis of V', for all b € R and n > 0 we may write

be Z B;,(a)v; +a"R
i=1

with B;,, € K[z] polynomials depending on i, n, and b.
For j € [0, m] we iteratively construct generalized linear polynomials
fi(T) € Q =z Z[T,
which are in fact of the form f; = Zfzo a'Tc; with ¢; € R, as follows. Let fo = T.
For j € [1,m], and with f;_; already constructed, consider the ascending chain of

right ideals (fj_l(vj)R + 30 [ fi—1(vy), ai]R) _y» Where [fi_1(v)), a'] denotes the
commutator. Since R is right noetherian the chain stabilizes, and hence there exist
n; > 0 and r;; € R with Tjm; =1 such that

Fima(u)rio + > [fi-1(vy), a'lrys = 0.
=1
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We set f; = fi1rj0 + Li[fj-1, @']rj.
By construction f;(v;) = 0if ¢ < j, and therefore

) € Z B;n(a)fj(vi) +a"R.

i=7+1

We conclude that f,,(b) € a"R for all b € R and all n > 0. Expanding f,,, we see
that it is of the form Zk 0@'Tc; with ¢; € R and ¢, = Ting " T, = L.

Lemma 5.1 implies that I = (0,50 a" R is not essential as right ideal of R. Hence,
with @) denoting the quotient ring of R, we have I(Q) # ) and so there exists
0 # z € @ such that 21Q) = 0. Clearing denominators, we may assume z € R~ {0}.
Hence zf,,(b) = 0 for all b € R. This contradicts Lemma 5.3. g

Lemma 5.5. Let V be a frame of R and k > 0. Then there exists a constant
C € Ry such that for infinitely many n > k,
dim V" /V"F < Cn.

Proof. Let C € R.y. Suppose there exists N > k such that for all n > N, we have
dim V" /V"=* > Cn. Set d(n) = dim V™. Then

d(N + lk) = d(N Z( (N +ik) = d(N + (i — 1)k))

> d(N)+C Z(N + ik)

i=1
!
=d(N)+CNI+ CkZz’.
i=1
Since the last sum grows quadratically in [, and this is true for arbitrarily large C,
this contradicts the quadratic growth hypothesis. U
Lemma 5.6. Let a € R*. Then there exists a C' € Ry such that
dim((V" +aR)/aR) < Cn
for infinitely many n.
Proof. Let k > 0 be such that a € V¥ and let n > k. There is a homomorphism
of K-vector spaces ¢: V" — R/aR with im¢ = (V" + aR)/aR. Since a € V¥,
we have aVV/" % C V". Hence ¢ induces an surjective vector space homomor-
phism V"/aV"* — im¢p. By Lemma 5.5, there exists a C' € Ry, such that
dim V" /aV"=* < Cn for infinitely many n. (Note that dimaV"* = dim V"
since a is a non-zero-divisor.) U

Lemma 5.7. Ifa, b € R* with aR C bR C R, then there exists ¢ € Z>( such that
dim (((V" +aR)N bR)/aR) n—c
for all sufficiently large n.
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Proof. We write V" for (V" + aR)/aR. Let k > 0 be such that b € V*, and let
W =VkNbR/aR. Since b+ aR generates bR/aR, it follows that
bR/aR = | WV™

n>1

Suppose that there exists an N > 1 such that WVt = WV, Then WV N+ =
WV for all n > 0. This implies that bR/aR is finite-dimensional, and hence
b~'a € R is an almost unit but not a unit, in contradiction to Lemma 5.4. Hence
we must have WV™ C WV for all n > 0. Observe WV™ C Vn+tkN\bR/aR. Thus

dim(VE N bR/aR) > dim(WV") > dim(W) + n. O

Theorem 5.8. Let K be a field and let R be an affine noetherian prime K -algebra
of quadratic growth. Then R is a BF-ring.

Proof. We may without loss of generality assume that R is not a PI ring, as we
have already proved the result for noetherian prime PI rings. For a € R®* we define
dim((V™ + aR)/aR)J

n

Ma) = {ligiolgf

and claim that A is a right length function. By Lemma 5.6, the limit inferior is
finite. Now, if aR C bR with b € R®, then, using Lemma 5.7, there exists ¢ € Z>
such that
dim((V" 4+ aR)/aR)  dim(((V" +aR)NbR)/aR) dim((V" +bR)/bR)
n B n * n

¢ dim((V"+bR)/bR)

n + n '

Thus A(a) > 1+ A(b). O

>1-

Ezample 5.9. The ring R from Example 4.15 is Q-affine with frame V' generated
by e11, weir, yeir, ¥ teir, a1, €12, €29, €20y (see [MROL, §13.10.2]; we add ey to
have 1 € V| as is our convention). Now V" contains the linearly independent set
{xty™ ey : 0 <m < n,0<i<m}. On theother hand V" is contained in
{ziy™ e : 0<m<n, 0<i<m, k,l €{1,2}}. Thus R is a prime PI Q-affine
algebra of quadratic growth that is not atomic, and in particular, not a BF-ring.
We see that the condition that R be noetherian in Theorem 5.8 cannot simply be
dropped.

6. SUFFICIENT HOMOLOGICAL CONDITIONS FOR BF

This section contains two main results. When restricted to algebras over a field,
the first of these results (Corollary 6.4) is a special case of the second (Theorem 6.15).
Despite this, we have included a separate proof of Corollary 6.4 before proceeding to
Theorem 6.15, since it applies to rings rather than to algebras. The basic underlying
idea is similar in both cases - namely, a function from (isomorphism classes of)
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modules to ordinals is defined, with properties which preclude the possibility of
factorizations of unbounded length. But in order to achieve this the second result
requires significantly more heavy-duty technology than the first.

In §6.1 we state a simple and very general lemma, Lemma 6.2 and then apply
it to prove in Corollary 6.4 that every Auslander Gorenstein noetherian ring is a
BF-ring. In §6.2 the concept of an Auslander dualizing complex is recalled from
[YZ99], and used to prove Theorem 6.15, yielding for example property BF for all
prime noetherian algebras which are factors of an algebra with such a dualizing
complex. Consequences for noetherian algebras of finite Gelfand-Kirillov dimension
are discussed in Corollary 6.17. Finally, in §6.3 we show that for a commutative
noetherian ring R there is a very natural (and non-homological) choice of a function
7 satisfying the hypotheses of Lemma 6.2, hence yielding another proof of property
BF for commutative noetherian domains. However, as we show by an example due
to Hochster and Heitmann suggested to us, this function does not satisfy Gabber’s
Maximality Principle, which is key to the proof of Theorem 6.15.

6.1. Auslander-Gorenstein rings.

Notation and Definition 6.1. Suppose that j is a map from Mod;(R), a
representative set of isomorphism classes of finitely generated right R-modules, to
the set of ordinal numbers. Then:

(1) M € Mod¢(R) is called j-pure if j(M) = j(IV) for every nonzero submodule N
of M.

(2) j is called exact, if for every finitely generated module M, and 0 C N C M,
§(M) = inf{j(N), j(M/N)}.

(3) If v is an ordinal number, then j is called finitely partitive on « if for every
M € Mod¢(R) with j(M) = a, there is a finite bound on the length of chains of
submodules of M of the form My C M; C --- C M, = M with j(M;,1/M;) = «
for every 0 < i < n.

(4) 7 is said to satisfy the torsion property on R, if j(R/xR) > j(R) + 1, for every
nonunit regular element x of R.

Given a map j from Mod (R) to a set of ordinal numbers and an infinitely
generated module M, we can define j(M) to be inf{ j(N) : 0 # N C M, N finitely
generated }. If j is exact, then this extension remains exact. That is, if M is a right
module, not necessarily finitely generated, then again j(M) = inf{j(N), j(M/N)}
for every nonzero submodule N of M. To prove this, let 0 € N C M be a
submodule of M, then by definition of 7, it is easy to see that j(M) < j(/N). Now
let j(M/N)=j(kiR+ keR+---+ k,R+ N/N). Then j(M/N) = j(kiR + ko R +
oo+ EyR/(NNKIR+ kR4 -+ -+ kyR)) > j(kiR+ keR+ - - - + k,R) > §(M).

There exists a finitely generated submodule N’ of M such that j(M) = j(N').
Therefore, j(N') = j(N N N’) or j(N') = j(N'/N'"n N). In the first case, we
have j(N) < j(N'N N) = j(M) and so j(M) = j(N) and in the second case,
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J(M/N) < j(N'"+ N/N) = j(M) and so the equality holds.

In the rest of §6, given a ring R, j will always denote a function from Mod;(R)
to a set of ordinal numbers, which is then extended as above to infinitely generated
modules. Thus we can talk about not necessarily finitely generated j-pure modules
in a similar fashion to Notation 6.1(1).

A tight bound on the value of j on cyclic modules of the form R/xR will be
important for us in the sequel, as the following lemma confirms.

Lemma 6.2. Let R be a noetherian ring for which there exists a map j from
Mods(R) to a set of ordinal numbers such that, for a fived ordinal number «, j
is finitely partitive on o and j(R/xR) = « for every x € R* ~ R*. Then R is a
BF-ring.

Proof. Let R be as stated and let x € R®* . R*, so j(R/xR) = a. Suppose that
T =ay---a; with a; € R* ~ R* for all i. Then there is a chain of submodules

O:MQ ng :al---at_lR/mRQ th—l :alR/ng Mt:R/ZL'R

of R/xR, with M;/M; = R/a;_;R for all i = 0,...,t — 1. By hypothesis,
J(M;11/M;) = « for all i. Hence, since j is finitely partitive on «, there is a bound
on the length of such chains. Therefore, R is a BF-ring. U

To give the first application of Lemma 6.2, we need to recall some homological
terminology. For more details, see [Lev92], [Cla01] or [Bj689], for example.

Definition 6.3. Let R be a noetherian ring.
(1) Let M be a left or right R-module. The (homological) grade of M is

FJ(M) = inf{i|Exts(M,R) # 0} € ZsoU{w}.

In particular, j(0) = w, where 0 denotes the zero R-module.
(2) R satisfies the Auslander condition if, for every left or right R-module M and
every non-negative integer i, j(N) > i for every submodule N of Ext (M, R).
(3) R is Auslander-Gorenstein if
(i) R has finite (and equal) right and left injective dimensions;
(ii) R satisfies the Auslander condition.
(4) R is Auslander-regular if it is Auslander-Gorenstein and has finite global (homo-
logical) dimension.

The fact that the (negative of the) grade yields an exact finitely partitive
dimension function for Auslander-Gorenstein rings was first observed by Bjork
[Bj689, Theorem 1.17]; a detailed account in this setting was given in [Lev92,
Theorem 4.2, (4.6.5), (4.6.7)]°.

3Note that the definition of “finitely partitive” given in [Lev92, Proposition 4.5(iv)] is weaker
than Definition 6.1; but Levasseur observes in [Lev92, (4.6.5)] that the stronger conclusion is
valid.
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Corollary 6.4. Fvery Auslander-Gorenstein ring is a BF-ring.

Proof. Let R be an Auslander-Gorenstein ring and let x € R®* ~ R*. Then
Hompg(R/xzR,R) = 0. Moreover, since 0 - R - R — R/xR — 0 is a non-
split exact sequence as rR = R, it follows that Exts(R/zR, R) # 0, so that
j(R/xR) = 1. However, as noted before the corollary, when R is Auslander-
Gorenstein the homological grade j is finitely partitive for every ordinal, and in
particular for 1. Therefore R is a BF-ring by Lemma 6.2. U

We list here some large and important classes of noetherian rings which are
known to be Auslander-Gorenstein.

Ezamples 6.5. (1) At the time of writing, all known noetherian Hopf algebras are
Auslander-Gorenstein. Whether this is in fact a theorem has been an open
question for 25 years, see [BG97, 1.15]. Many large classes of noetherian Hopf
algebras are known to be Auslander-Gorenstein. These include:

(e) noetherian Hopf algebras satisfying a polynomial identity [WZ03, Theorem
0.1];

(e) group algebras of polycyclic-by-finite groups [BZ08, Theorem 6.7];

(e) enveloping algebras of finite dimensional Lie algebras [Eks89];

() quantised enveloping algebras [BG97, Proposition 2.2];

(e) connected Hopf algebras of finite Gelfand-Kirillov dimension [Zhul3];

(e) quantised coordinate rings of semisimple groups [GZ07, Theorem 0.1].

(2) A commutative noetherian ring is Auslander-Gorenstein if and only if it is
Gorenstein; that is, if and only if it has finite injective dimension [Bas63].

(3) A ring with a locally finite N—filtration whose associated graded ring is com-
mutative Gorenstein is Auslander-Gorenstein. In particular, the Weyl algebras
A, (k) over a field k are Auslander-regular of global dimension n in characteristic
0, and 2n in characteristic p > 0 [Eks89].

(4) A local* fully bounded noetherian ring of finite global dimension is Auslander-
regular [Teo97].

(5) Sklyanin algebras are Auslander-Gorenstein domains [TvdB96].

6.2. Dualizing complexes. In this subsection we give two further applications
of Lemma 6.2. First, we strengthen the homological technology used to define
the function j in Corollary 6.4 so that a much larger class of noetherian rings are
included than the Auslander-Gorenstein rings considered in §6.1; the outcome is
Theorem 6.15. A cost of this (apart from the weight of equipment required) is that
we have to work with algebras over a field, rather than rings.

In the rest of this section k& will denote a field, and all unadorned tensor products
are assumed to be over k. The opposite ring of a k-algebra R is denoted by
R°, and R® denotes the k-algebra R ® R°, so that Mod(R¢) is the category of

4By a local ring we mean a ring whose factor by its Jacobson radical is simple artinian.
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R — R-bimodules on which k operates centrally. Given an algebra R, D(Mod(R))
(resp. D®(Mod(R)) will denote the derived category (resp. the bounded derived
category) of right R-modules; for details, see for example [Yek20].

The following definition, which is enough for our purposes here, is a special case
of the more general version, for two possibly distinct algebras, given in [YZ99,
Definition 1.1].

Definition 6.6. Let R be a noetherian k-algebra. A complex R € D*(Mod(R® R°))
is called a dualizing complex over R if it satisfies the three conditions below:

(i) R has finite injective dimension over R and R°;
(ii) R has finitely generated cohomology modules over R and R°;
(iii) The canonical morphisms R° — RHompg(R,R) and R — RHompg- (R, R)
in D(Mod(R*)) are isomorphisms.

To say that the dualizing complex R for the k-algebra R satisfies the Auslander
property simply means that the usual definition of the Auslander-Gorenstein
condition - Definition 6.3(3) - holds when the ring R is replaced by R. More
precisely, we have the following definitions.

Definition 6.7. (Yekutieli, Zhang, [YZ99, Definitions 2.1,2.2]) Let R be a dualizing
complex for the noetherian k-algebra R.

(1) Let M be a finitely generated R-module. The grade of M with respect to R is
jrir(M) = inf{j : Exth(M,R) # 0} € Z U {oc}.

A similar definition gives the grade jg.ge (M’) of an R°-module M'.
(2) R is an Auslander dualizing complex for R if
(i) for every finitely generated R-module M and integer ¢, and for every
nonzero finitely generated R°-submodule N of Ext% (M, R),

Jrire(N) 2 q;
(ii) the corresponding condition holds for finitely generated R°-modules M.

In the remainder of this section R will always be used to denote an algebra over
the field £ with Auslander dualizing complex R. For convenience and to align
our notation as far as possible with the first part of §6, we will denote the maps
Jr:r and jr.re defined in Definition 6.7 respectively by j and j°. A nonzero right
R-module M will be called j—pure if j(N) = j(M) for all nonzero submodules N of
M:; and similarly we may refer to j°—pure left modules. Without loss of generality,
because R is of finite injective dimension, we can suppose that the grade is always
non-negative. For consistency of notations throughout §6, whenever j(M) = oo for
an R-module M we will write j(M) = w, and similarly for j°(M).

The link between the ideas of the first part of §6 and the present discussion is
made clear by the following key result.
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Theorem 6.8. (Yekutieli-Zhang, [YZ99, Definition 2.4, Definition 2.9 and Theo-
rem 2.10]) Let R be a noetherian k-algebra with an Auslander dualizing complex R.
Then —j and —j° are finitely partitive exact dimension functions.

We will follow Yekutieli and Zhang [YZ99, Definition 2.9] in calling —j and —j°
the canonical dimension functions associated to R. It is important to note that the
dimension function —j can take its values over not necessarily finitely generated
modules too as explained after Notation 6.1.

As is well known, the apparatus of critical modules and related technology can
be invoked once one has available a finitely partitive exact dimension function.
Summarising briefly for the present context, a nonzero finitely generated right R-
module M is j-critical if every proper quotient of M has j-dimension strictly bigger
than j(M). Given a finitely generated right R-module M, a j-critical composition
series for M is a finite chain

O=MyC M C---CM=M

of submodules M; of M, with the subfactors M;/M; 1 j-critical for i = 1,... .
We say that critical R-modules C' and D are similar if there is a nonzero R-module
X which embeds in each of them; equivalently, since critical modules are uniform,
C and D are similar if and only if they have isomorphic injective hulls. One then
has:

Theorem 6.9. Let R be a noetherian k-algebra with an Auslander dualizing complex
R

(1) (1YZ799, Corollary 2.17]) Every finitely generated right R-module M has a j-
critical composition series.

(2) Suppose that 0 = My C My C---C My =M and 0 =Ny C N; C--- C Ny =
M are two j-critical composition series for M. Then s = t and there is a
permutation o of {1,...,t} such that M;/M;_; is similar to Nygy/No@)-1 for
alli=1,...,t.

Proof. (1) The argument given in [GW04, Theorem 15.9] for Krull dimension
works also for j. One simply has to note that the finitely partitive property of j
guaranteed by Theorem 6.8(1) ensures that every nonzero module X contains a
j-critical submodule Y. So, we fix a to be the least canonical dimension occurring
amongst nonzero submodules of M, and let M; be maximal amongst a-critical
submodules of M. Then, repeat the procedure with M /M;.

(2) This can be proved by standard methods - for example, one may follow
the argument for Krull-critical composition series given in [MRO1, Proposition
6.2.21]. O

An easily overlooked but nevertheless fundamental point concerning the canonical
dimension is that it always takes finite values on nonzero finitely generated modules:
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Proposition 6.10. Let R and R be as in Theorem 6.9, and let M be a nonzero
finitely generated R-module. Then j(M) € Z.

Proof. Suppose that M is a nonzero finitely generated R-module with j(M) = w.
Since 7 is finitely partitive by Theorem 6.8, we can replace M by a submodule if
necessary and so assume that M is j-critical with dimension w. But this contradicts
the fact that every uniform injective R-module appears in any minimal injective
resolution of R, by [YZ99, Theorem 1.11(2)] (whose proof is taken from [ASZ98,
Theorem 2.3]). O

To generalise the proof of the BF property given for Auslander-Gorenstein rings
in Corollary 6.4 to the broader setting of algebras having an Auslander dualizing
complex we need to be able to precisely control the increase in the value of the
grade when passing from a finitely generated module M to M /(M) for certain
finitely generated j—pure modules M and module monomorphisms . Note that
this was possible for rather trivial reasons in the proof of Corollary 6.4, for the
crucial case there of R = M. In the present setting an inequality in one direction
follows easily, as we show in Lemma 6.12. First we note in Lemma 6.11 that Lemma
6.12 applies in the key case where M = R/P for a prime ideal P of R.

Lemma 6.11. Let R be a noetherian algebra with an Auslander dualizing complex
R and let P be a prime ideal of R. Then R/P is a j-pure and j°-pure R-module.

Proof. We prove the result for j, the argument for left modules being identical.
Suppose the result is false, and let 7" be a nonzero right ideal of R/P with

J(T) > j(R/P). (3)
Replacing T' by a smaller right ideal if necessary, we may assume that 7" is uniform.
By [GWO04, Proposition 7.24], there exists an essential right ideal B of A/P such
that
B = EBE:lTa

where ¢ is the uniform dimension of R/P. Since j is exact by Theorem 6.8, (3)
implies that

J(B) = j(T) > j((R/P)g). (4)
But, by Goldie’s key lemma, [GW04, Proposition 6.13], B contains a regular element
d+ P of R/P. Since R/P = dR + P/P C B we deduce that

J(B) < j((RR/P)g). ()
(4) and (5) yield a contradiction, so no such right ideal 7" of R/P can exist. The
argument on the left is the same. O

Recall that a (right, say) module M over a noetherian ring S is called a torsion
S-module if for each m € M there exists ¢ € S® such that mc = 0. The following
result is a minor strengthening of the work in [YZ99, §2], where the result is noted
for the case where I is a prime ideal.
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Lemma 6.12. Let R be a noetherian k-algebra with an Auslander dualizing complex
R. Then j(M) > j(R/I) + 1, for every ideal I such that R/I is j—pure and every
finitely generated torsion right R/I-module M ; and similarly for j° with left modules.

Proof. By the exactness of j it is enough to prove this when M = R/cR+ I, where
¢ € R is such that ¢+ I € (R/I)*. Moreover exactness also implies that

J(R/cR+1) = j(R/I), (6)

so by Proposition 6.10 it remains only to show that equality is impossible in (6).
To see this, note that, for all ¢ > 0,

CR+T/TR+T = R/cR+ 1. (7)
However —j is finitely partitive by Theorem 6.8, so (7) shows that equality in (6)
would yield a contradiction. O

In particular, we thus see that j(R/cR+ 1) > j(R/I)+ 1 when R, I and c are as
in Lemma 6.12 and its proof. To show that this is in fact an equality seems more
tricky, requiring a resort to Gabber’s Maximality Principle, which we now recall.

Definition 6.13. [Bj689, page 145] Let § be a dimension function on Mod(R) and
let N be a (not necessarily finitely generated) j—pure R-module with 6(N) = n.
Then ¢ is said to satisfy Gabber’'s Maximality Principle on N if, for every finitely
generated submodule M of N, there exists a submodule M of N maximal such
that 6(M /M) < n —2, and M is finitely generated.

The crucial point to observe about the definition is that N is not assumed to be
finitely generated. Note that when ¢ is exact, we can see easily that the module M
in the definition is unique. Here is the result we need about Gabber’s Maximality
Principle.

Theorem 6.14. [YZ99, Theorem 2.19] Let R be a noetherian k-algebra with an
Auslander dualizing complex R, and let —j = —jr.r be the associated canonical
dimension function on Mod(R). Then —j satisfies Gabber’s Mazximality Principle
on all nonzero j-pure R-modules.

Now we are in a position to see that every prime factor of a noetherian k-algebra
with an Auslander dualizing complex is a BF-ring:

Theorem 6.15. Let R be a noetherian k-algebra with an Auslander dualizing
complex R, and let j = jr.r be the associated grade function on R-modules.

(1) If R/I is a j—pure or j°—pure factor ring of R with an artinian classical ring
of quotients, then R/I is a BF-ring.
(2) Let P be a prime ideal of R. Then R/P is a BF-ring.

Proof. (1) Let ¢ € R be such that ¢+ [ is a regular nonunit of R/I. We claim that
J(R/cR+1) = j(R/I)+ 1. (8)
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By Lemma 6.12 and Proposition 6.10,

J(R/I) < j(R/cR+ 1) < w. (9)
Suppose for a contradiction that
J(R/cR+ 1) > j(R/I)+2. (10)

Let Q(R/I) denote the artinian quotient ring of R/I. Write ¢ :=c+ I € (R/I)®,
and define
M = |J&"R/I CQ(R/I).
n>0
For each n > 1, ¢ ™R/I has a finite chain of R-submodules {M; :=¢'R/I:0 <
i <n}, with My = R/I and successive subfactors M;,,/M; isomorphic to R/cR+ I
for 0 < i < n. Therefore, by exactness of j and (10),

J(M/(R/T) > j(R/T)+2. (11)
However R/I is j-pure by hypothesis. Hence Q(R/I), being a union of copies of
R/I, is also j-pure. So Theorem 6.14 implies that M /(R/I) is a finitely generated

R/I-submodule of Q(R/I)/(R/I). Since ¢+ I is not a unit of R/I, this is easily
seen to be impossible, so (10) is false and

§(RJcR+1) = j(R/I)+ 1. (12)

The result now follows at once from Lemma 6.2.
(2) This is a special case of (1), since R/P is j—pure by Lemma 6.11 and R/P
has a simple artinian quotient ring by Goldie’s theorem. O

Remarks 6.16. (1) The question of which affine noetherian k-algebras have (Auslan-
der) dualizing complexes is extensively discussed in [vdB97], [YZ99]. For example,
[YZ99, Corollary 6.8] states (roughly) that an N—filtered k-algebra, with Ag = k
and dimy(A,) < oo for all n, whose associated graded algebra is noetherian and
has a (graded) Auslander dualizing complex will itself have an Auslander dualizing
complex.

(2) It is a consequence of [YZ99, Corollary 2.18] that a noetherian k-algebra
which has an Auslander dualizing complex must have finite (Gabriel-Rentschler)
Krull dimension. This suggests a possible direction in which to look for a noetherian
algebra not satisfying property BF.

(3) If one is faced in the setting of Theorem 6.15(1) with an ideal I of the algebra
R which is not semiprime, it may in practice be difficult to determine whether the
hypotheses of j—purity of R/, and the existence of an artinian quotient ring of
R/I, are satisfied. In fact, it may be that j—purity implies the existence of an
artinian quotient ring.

Here is an important case where this is true, and moreover where j—purity may
become much easier to determine. Let R, R and j = jg.r be as in Theorem 6.15,
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and suppose that R has finite Gelfand-Kirillov dimension, GKdim(R) = n < occ.
(See [KLOO] for the properties of Gelfand-Kirillov dimension.) Following [Lev92,
Definition 5.8] and the generalisation in [YZ99, Definition 2.24] we say that R is
GK-Cohen Macaulay with respect to jz.r if, for every nonzero finitely generated
R-module M,

GKdim(M) + jr.r(M) = n. (13)

In the setting of Theorem 6.15 we know by Theorem 6.8 that j is exact, so
when R is also GK-Cohen Macaulay the Gelfand-Kirillov dimension is also exact,
by (13). Moreover (13) also shows that the j—purity of R/I is equivalent to
GK-purity of R/I; usually, we say then that R/I is GK-homogeneous. Finally, when
GK-dimension is exact, a GK-homogeneous noetherian algebra has an artinian
quotient ring, by [Lev92, Theorem 5.4]. We have thus obtained from Theorem
6.15(1):

Corollary 6.17. Let R be a noetherian k-algebra of finite GK-dimension which
has an Auslander dualizing complex R. Suppose that R is GK-Cohen Macaulay
with respect to jr.gr, and let I be an ideal of R with R/I GK-homogeneous. Then
R/I is a BF-ring.

Corollary 6.17 prompts the following

Questions 6.18. (1) Does every affine noetherian k-algebra of finite Gelfand-
Kirillov dimension have an Auslander dualizing complex?

(2) Is every affine noetherian k-algebra of finite Gelfand-Kirillov dimension a
BF-ring?

This would provide a major generalization of the results from Section 5.

(4) Regarding Remark 6.16(3), we might hope that, given a noetherian k-algebra
R with finite and exact GK-dimension, property BF for R could be approached
by applying Lemma 6.2 directly, using GKdim as the function j of that lemma.
However it is not clear that the Gelfand-Kirillov dimension will be finitely partitive
on R-modules, nor that GKdim(R/aR) = GKdim(R) — 1 for « € R* ~ R*. Recall
that, when GKdim is replaced by the Krull dimension Kdim, the latter property
fails drastically for the Weyl algebras: in a famous paper [Sta85], Stafford showed
that, for every n > 2, the Weyl algebra A, (C) contains an element ¢ and d such
that A,(C)/cA,(C) is a simple module and so has Krull dimension 0, whereas
Kdim(A,,(C)/dA,(C)) = n — 1. Since the Weyl algebras are Auslander regular and
GK-Cohen Macaulay, we know from (the proof of) Corollary 6.4 that

GKdim(A,(C)/cA,(C)) = GKdim(A,(C)/dA,(C)) = 2n — 1,

but this can be be proved directly, much more easily - see [KL00, Corollary 8.6].
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6.3. Commutative noetherian rings revisited. Recall that the support of a
module M over a commutative ring R is the set supp(M) of prime ideals of R such
that Mp # 0. It is easy to see that if M is finitely generated, supp(M) = {P :
Ann(M) C P}, where Ann(M) denotes the annihilator of M. Let ht(P) denote
the height of a prime ideal P of R. Consider the following definition:

Definition 6.19. Let R be a commutative noetherian ring. Define a function j on
Mod;(R) by

J(M) = inf{ht(P) : P € supp(M)},
with 7(0) := oo.

It is easy to check that the above map j is exact on Mod;(R) - this is an
immediate consequence of the exactness of localisation. Thus j can be extended to
a map from Mod(R) to Z>o U {oo} as discussed after Notation 6.1. We can give
yet another proof of

Proposition 6.20. If R is a commutative noetherian ring then R is a BF-ring.

Proof. This is a consequence of Lemma 6.2 provided it can be shown that the
above map j is (i) finitely partitive on Mod;(R), and (ii) j(R/zR) = 1 for all
r € R* R*.

To prove (i) let M be a nonzero finitely generated R-module with j(M) = n,
and let {P,..., P} be the subset of primes containing Ann(M) of height n. Note
that this set is finite, since it consists of primes minimal over Ann(M). For each
t=1,...,t, Mp, is a nonzero Rp-module of finite composition length, say ¢;. Now
it is easy to see that any chain of R-submodules of M with all subfactors X having
j(X) = n must have length at most Y, ¢;, as required.

Since (ii) is an immediate consequence of the Principal Ideal Theorem and the
fact that minimal primes of R consist of zero divisors, [Eis04, Theorem 10.1 and
Corollary 2.18], this completes the proof. U

Note however that this is essentially a rephrasing of the classical proof [AAZ90,
Proposition 2.2| into the present setting.

The following example shows that, while the function j of Definition 6.19 satisfies
the hypotheses of Lemma 6.2, —j does not satisfy Gabber’s Maximality Principle.

Ezample 6.21. (M. Hochster, R. Heitmann) The ring S = K[z, y, 2] /(2?, xy), where
K is a field of characteristic zero, is the completion of a noetherian domain R. The
function —j described after the Example 6.5 does not satisfy Gabber’s Maximality
Principle on Qg, with () the denoting the quotient field of R.

The proof of this claim is organized in four steps.

Step (1): S is a local noetherian complete ring of dimension 2.
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The formal power series ring k[z,y, z] is a local noetherian complete ring of
dimension 3 (see [Sha90, Exercise 15.30]). Since a quotient of a complete ring is
again complete, the ring S is complete, and due to the chain

(2)/ (2, 2y) C (2,9)/ (2%, 2y) € (2,y,2)/ (2 2y) € S

of prime ideals, S is of dimension 2.

Step (2): S is the completion of a noetherian local domain, say R.

We must check the two conditions in [Lec86, Theorem 1]. Thus we have to show:
(i) the prime ring of S, that is the set { klg : k € Z }, is a domain that acts on S
without torsion; (ii) the maximal ideal of S does not belong to the set of associated
prime ideals of 0.

Since S is an K-algebra and K is of characteristic zero, condition (i) is trivially
satisfied. To verify (ii), let 0 = Q1 N ---NQ,, be a primary decomposition of 0. The
associated prime ideals of 0 are the radicals P; of (J;. The union P, U---U P, is
the set of zero-divisors of S. Since z € (x,v, 2)/(2z?%, xy) is not a zero-divisor, the
maximal ideal (z,y, z)/(2?, xy) is not an associated prime ideal of 0. Therefore (ii)
holds too.

Step (3): R is of dimension 2 and H,%R(R), that is, the direct limit of the direct
system { Ext'(R/mk, R) : k > 1}, is not a finitely generated R-module. (Here mp
denotes the mazimal ideal of R.)

Krull dimension is preserved by passing to the completion. Therefore R has
Krull dimension 2. There is a natural embedding from R into its completion S and
the maximal ideal of S, that is mg, is equal to mzS. We have an S-isomorphism
H) (R) = Hy_(S), see [BHI3, Lemma 3.5.4(d)]. To show that H (R) is not
finitely generated as R-module, it is therefore enough to show that Hnlis(S) is not
finitely generated as an S-module.

Suppose that T'= K[xz,y, z]. Then T is a regular local ring (and so Gorenstein
and Cohen-Macaulay) of dimension 3. We can apply [BH93, Theorem 3.3.7] and
Grothendieck’s duality (local duality theorem) [BH93, Corollary 3.5.9] to M = S
to see that H} (S) is the Matlis Dual of Ext}(S,T). Now by [BH93, Theorem
3.5.4(a)], Hy (S) is artinian and also equal to H,_(S), see [Eis05, Corollary A1.8].
So if Hy, (S) is a finitely generated S-module, so is Hy, (S) and so they are of finite

length. This shows that its dual, that is Ext7(S, T), is of finite length, see [BH93,
Theorem 3.2.13]. Thus Ext3.(S,T) vanishes when one localizes at P = (z,y)7T.
Localization commutes with Ext for finitely generated modules over commutative
noetherian rings ([Wei94, Prop 3.3.10]), and this would imply Ext}. (Sp,Tp) = 0.
Again using the duality theorem, since Tp is a regular ring of Krull dimension 2,
the Matlis dual of Ext2TP (Sp,Tp) over Tp is Hpp,(Sp) (this is the direct limit of
direct system {Hom(Tp/(PTp)*, Sp) : k > 0}). But the latter can not be zero
because Hpp, (Sp) is the set of all elements of Sp that are annihilated by a power of
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PTp, and the image of = in Sp is a nonzero element of Hp, (Sp) (see for example
[BH93, Page 126, 127] or [Eis05, Page 187]).

Step (4): Hy (R) is isomorphic to a submodule of Q/R and the minimal prime
ideal containing the annihilator of Hy, (R) is mp.

Every noetherian local ring of dimension d has a system of parameters of
d elements. Since R is of dimension 2, this means that there exist u, v € R
such that mg is the minimal prime ideal over (u,v). Then it is known that
Hy, (R) = H, (R), as the radical of (u,v) is mg. Consider the complex

0= R -5 Rlu™) @ Rv™'] & R[(w)™'] — 0,

where f maps r to (r,r) and g takes (r/u®,7’/v") to r/u® — r'/vt. By [Eis05,
Theorem A1.3], the cohomology H|,,,(R) is isomorphic to ker(g)/im(f). Noting
that ker(g) can be identified with a submodule of @, this means that H (R) is
isomorphic to a submodule of Q/R.

For the other part of Step (4), note that if k+im(f) is an element of ker(g)/im(f),
there exist n, m > 1 such that «™, v are in the annihilator of k+im(f). Therefore
a minimal prime ideal containing the annihilator of k£ + im(f) must contain v and
v. Since mp is the minimal prime containing (u, v), this implies that the minimal
prime ideal containing ann(k + im(f)) is mg. Similarly the minimal prime ideal of
the annihilator of every finitely generated submodule of ker(g)/im(f) is mg, which
is of height two.

7. AN EXAMPLE

In this section we construct a finitely presented atomic domain that does not have
BF. In fact, it will be an atomic domain that does not have ACCP. Our example is
a semigroup algebra (over a field), and the main difficulty lies in establishing its
atomicity.

Let K be a field and S a monoid. We write K[S] for the semigroup algebra of S
over K. Every f € K[S] has a unique representation of the form

f= Z asS with a, € K, almost all zero.
seS

We write supp(f) == {s € S :as # 0} for the support of f.

In the noncommutative setting, in general, the problem of characterising (semi)group
algebras that are domains is a very hard one, known as Kaplansky’s zero-divisor
conjecture [Pas77, Chapter 13], as is the related characterisation of units (with a
recent counterexample to the unit conjecture given by Gardam [Gar21]). To avoid
these issues, we work with right orderable monoids.

A monoid S is right orderable if there exists a total ordering on S, such that a < b
implies ac < be for all a, b, c € S. Recall that a submonoid S C T is divisor-closed
if, whenever a, b € T are such that ab € S, then already a € S and b € S.
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Lemma 7.1. Let K be a field and let S be a right orderable cancellative monoid.
(1) K*S is a divisor-closed submonoid of KIS].

(2) KI[S] is a domain.

(3) K[S]* = K*S*.

Proof. As in the case where S is a group [Pas77, Lemma 13.1.7 and 13.1.9]. O

We now construct the example. For the rest of this section, let F' be the free
group on generators b, c. Let a be the group automorphism of F' defined by
a(b) = c and a(c) = b~'. Consider the semidirect product G := F X, gr(a), where
(gr(a),) = (Z,+) is infinite cyclic. We identify a = (1,a), b = (b, 1), and ¢ = (¢, 1).
Then G is the group generated by a, b, ¢, with relations generated by aba™! = ¢
and aca™! = b1, Let S C G be the submonoid generated by a and b.

Lemma 7.2. (1) G is right-orderable.
(2) K[G] is a BF-domain.

Proof. (1) Since both F' and Z are right orderable (indeed, both of them are even
orderable), the semidirect product G is right orderable as well [Pas77, Lemma
13.1.5).

(2) K[F] is a free ideal ring by a result of P. M. Cohn [Coh06, Corollary 7.11.8].
By [Coh06, Proposition 3.2.9], this implies that K[F] is atomic and that a strong
uniqueness property holds for the factorizations of an element x € K[F]: given any
two factorizations of x, it is possible to pass from one to the other using a series of
comaximal transpositions (essentially an application of Jordan-Hélder to [aR, R],
which is a modular lattice of finite length thanks to R being a free ideal ring; see
the discussion preceding [Coh06, Proposition 3.2.9]). In particular, the length of
two factorizations of a is therefore the same. Thus, K[F] is half-factorial and, in
particular, has BF. Since K[G] is a skew Laurent polynomial ring over K[F], also
the ring K[G] has BF by Proposition 3.5. O

Our next step is to exhibit an explicit presentation of the submonoid S of G in
terms of generators and relations.

Lemma 7.3. S is isomorphic to {(a,b | ba*b = a?, a*b = ba).

Proof. One checks immediately that ba?b = a? and a*b = ba* hold in G. We claim
that, using these two relations, any word z in a, b can be reduced to the form

x=b"a" " a™b™? - a" b a", (14)

with k>0, mg >0, my, ..., mp >0,1n>0,n9,...,n € {1,3} and ny € {1,2,3}.
Further, if n; = 2 we can assume mg = 0.

Indeed, a priori  has such a form with mg, n >0, £ >0, mq, ..., mg > 0 and

ni, ..., ng > 0. Moving fourth powers of a to the right using a*b = ba*, we may

assume n; € {1,2,3} foralli € {1,...,k}. If i > 2 and n; = 2 we may successively
use ba?b = a® to reduce m,_; and m,; until one of them becomes zero, at which
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point we obtain a representation with smaller £ and continue inductively. This
leaves only n; to deal with. If mg > m;, we can again merge a™ with a"*. So if
ny = 2 we can assume mgy < mq and then reduce to mg = 0.

We now claim that any two words of the form above with distinct parameters
yield distinct elements of G. To deduce this, we reduce a word in the form (14)
to the normal form in G in which all a’s are on the right. Note that ab = ca,
ac = b"ta, a®b = ¢ 'a?, and a’c = ba®.

Suppose first ny # 2. Let g, =1ifn; =1land g; = -1 if n;, =3 for 1 <
Then a™b™ = c&™ag™ and a™c™ = b %Mg" for all 1 < ¢ < k and m
Inductively, one obtains

<.
> 0
persimgmitotniif i = () mod 4,
Frgimgnitetn - f i =1 mod 4,

perEmgritetn if § =2 mod 4,

cTerrEmgmittnif 4 =3 mod 4.

qmttnipm

Computing in GG, we thus find

T = bmo C€1m1 (b—1)€162m2 (C—l)slezsgmg b€1€2€3€4m4 . €1 €k_1Mk—_1 dfl"'fkmk an1+-~~+nk+n

-.6 s

where (e,d) € {(c7,b), (b,c), (c,b™"), (b7, ¢™1)} according to the congruence class
of k£ modulo 4. Note that from the word in b, ¢, working our way from left to right,
we can read off all m;’s and ¢;’s, and therefore also the n;’s. From the exponent of
a we can then compute n.

Suppose now n; = 2. Then myg=0. Let e, =1ifn; =1and ¢g; = -1 if n; =3
for 2 < i < k. We use a?b = b~'a? and a’c = ¢ 'a® together with the computation
from the first case to find

T = a2bm1 ngmz (b*l)&gsgmg . esg---sk,lmk,ldsz---ekmkan2+---+nk+n

— pmme2me (b—l)—€263mg . —€9 Ep_1Mk—1 d—52-~~6kmka2+n2+"~+nk+n c G,

- €

where again the values of d and e depend on k — 1 modulo 4. Note that this case
is distinguishable from the previous one because the exponent of the left-most b is
negative. As before, the m;’s and n;’s can be recovered unambiguously from the
representation. ]

Lemma 7.4. (1) If x € N,50 50", then there exist i > 0 and x; € S such that
= z;a®b'. If x € Ny>ob"S, then there exist i > 0 and x; € S such that
x = b'a’x;.

(2) Let f € K[S]. If f € Nps1 K[S|b™, then there exist m > 0 and g, € K[S] such
that f = gnma®d™. If f € N1 0"K[S], then there exist m > 0 and g,, € K[|
such that f = b™a%g,.

Proof. (1) By symmetry it suffices to show one of the claims. We shall use the
normal form established in the proof of Lemma 7.3. Due to the choices made there,
it is easier to prove the claim for right ideals. So let z € M,,5,b"S, with normal
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form and notation as in (14). For sake of contradiction, assume x is not of the
form b'a?z; with i > 0 and x; € S. In the normal form for z, we must then have
ny € {1,3}. Suppose z = b"y for some n > my and y in S. Writing y in normal
form, we have
y = b"a” " a2 - - - a" b a”

with I >0, o >0, g, ..., sy >0, v >0, v, ..., v € {1,3} and 11 € {1,2,3}.
First of all, note that v; = 2 leads to a contradiction to our choice of x, so that
11 € {1,3}. However, now b"y, with y expressed in its normal form, is already in
normal form. But z = b™y and, comparing the normal forms, my = n + o yields a
contradiction to n > my.

(2) By symmetry, it suffices to prove the first claim. If f € K[S]b", then each
monomial in supp(f) is in Sb™. Let f € N,5o K[S]b". By (1), we may write

k
f= Z )\ij-l"z‘jazblja
§=0

with suitable & > 0, i; > 0, 2;; € S, and );; € K. Choose m > max{iy, ..., i}
Then, by using a? = ba?b,

k k
f =3 b et = (30 A b o O
=0 =0

For 0 # f € K[G] we let deg,(f) € Z be the maximal a-degree of any monomial
in the support of f, and we set deg,(f) = —oo if f = 0. This is a well-defined
degree function, since K[G] may be viewed as a skew Laurent polynomial ring in
the indeterminate a over K[F|. Observe deg,(f) € Z>o U {—o0} for all f € KIS].

Lemma 7.5. K|S] is atomic.

Proof. Let us say f € K[S]* is atomic if f can be represented as a product of atoms
or if f is a unit. Since K[b] C K|S] is a divisor-closed submonoid, and KJb| is a
polynomial ring, every f € K[b]® is atomic in K[S]. We first show:

Claim A. for every nonunit f € K[S]®, there exists an atomic nonunit g € K[S]°
such that f € gK[5].

Suppose that this is not the case, and let m € Z-y be the minimal a-degree among
all counterexamples. Let Q@ C K[S] be the set of all f € K[S]* ~\ K[S]* with
deg,(f) = m and such that f does not have a nonunit atomic left factor. Since
K[G] has BF (by Lemma 7.2(2)), it satisfies the ascending chain condition on
principal right ideals. Hence { fK[G] : f € Q } has a maximal element fK[G] with
fe.

If f € Nys K[S]", then f = ga®b' with g € K[S] and [ > 0 by Lemma 7.4.
Then deg,(g) < m. If g is a nonunit of K[S], then g has a nonunit atomic left
factor by choice of m. If g is a unit, then a is a nonunit atomic left factor of f
(note that a € K[S] is an atom). In either case we arrive at a contradiction to
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our assumption on f. Thus there exists a maximal n > 0 such that f = f'b" with
' € K[S]. Then fK|G] = f'K|G]. Replacing f by f’ we may assume f ¢ K[S]b.

By construction, the element f cannot be an atom, and thus f = gh with
g, h € K[S]* ~ K[S]*. If deg,(g), deg,(h) < m, then we obtain a nonunit atomic
left factor of f from g (if g € K[S]*) or h (if g € K[S]*). Thus either deg,(g) = m
or deg,(h) = m.

Suppose first deg,(h) = m. Then deg,(g) = 0 implies g € K[b]. Therefore g is
atomic in K[S], a contradiction.

Let now deg,(g) = m. Since g is not atomic, the maximality of fK[G] implies
fK[G] = gK|G]. Thus h € K[G]* N K[b], and therefore h = Ab™ with A € K* and
n > 1. But this contradicts f & K[S]b.

Having shown Claim A, we can now show that K[S] is atomic. Assume that
this is not the case, and let m > 0 be the smallest a-degree among non-atomic
elements of K[S]*. Then

Q={K[G]f: f € K[5] is not atomic and deg,(f) =m }

has a maximal element K[G]f. If f € N,>; 0"K[S], then f = b™a?g for some
m >0 and g € K[S]. Since deg,(g) < deg,(f), then g is atomic, and so is f. Thus
there exists again a maximal n > 0 such that f = b"f" with f' € K[S], and we
replace f by f’ to obtain f ¢ bK[S]. By the claim, there exists an atomic nonunit
g € K[S]® such that f = gh with h € K[S]. Then h cannot be atomic and so
deg,(h) = m. Maximality of K[G|f gives g € K[G|* N K[b], and thus g = Ab"
with n > 0. But then n = 0 contradicts g being a nonunit. J

Proposition 7.6. K[S] = K(a,b | ba*b = o, a*b = ba') is a finitely presented
atomic domain that does not satisfy the ACC on principal right [left] ideals. In
particular, the domain K|[S| does not have BF.

Proof. We have already established that K[S] is a finitely presented atomic domain.
Consider the chain of principal right ideals

a’K[S]) C ba’K[S] C b?a*K[S] C --- Cb*a®K[S] C --- . (15)

The stated inclusions hold because b'a? = bFa?b*~! for all k > . Suppose | > k
and bla? = VFa®f with f € K[S]. Without restriction k& = 0. Moreover f must
be a monomial with deg,(f) = 0, so that in fact f = b™ for some m > 0. Thus
bla? = a?b™ with [ > 1 and m > 0. But this is impossible because the left and the
right side are both in the normal form as in (14). Thus the chain in (15) is an
infinite proper ascending chain of principal right ideals. By symmetry, K[S] also
does not satisfy the ACC on principal left ideals.

Since K[S] does not satisfy the ACC on principal right [left] ideals, it is in
particular not a BF-domain. Alternatively, this can be seen directly as follows.
The monoid S does not have BF as a and b are atoms and a? = b"a?b" implies
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L(a®>) D {2+2n:n>0}. ® Since S is divisor-closed in K[S], also K[S] does not
have BF. O

Since there exist (commutative) domains that satisfy the ACCP but do not have
BF, it would be interesting to know if the previous example can be refined in this
direction. We therefore pose the following question.

Question 7.7. Does there exist a domain R that is a finitely presented algebra
over a field, such that R satisfies the ACCP but is not a BF-domain?

8. LENGTH-PRESERVING HOMOMORPHISMS TO KRULL MONOIDS

Let H and D be monoids. We shall call a monoid homomorphism ¢: H — D
e length-preserving if L(a) C L(¢(a)) for all a € H;
o fully length-preserving if L(a) = L(¢(a)) for all a € H.
Note that a € H is an atom if and only if 1 € L(a). Thus, if ¢: H — D is
length-preserving and u € H is an atom, then ¢(u) is an atom of D. Conversely,
suppose  maps atoms of H to atoms of D. If a = uy---u; with atoms in H,
then p(a) = p(uy) -+ p(ug) with (uy), ..., ¢(ux) atoms of D. So, a monoid
homomorphism ¢: H — D is length-preserving if and only if it maps atoms of H
to atoms of D.

Suppose that H is atomic. If a length-preserving homomorphism ¢: H — D to
a monoid D with bounded factorizations exists, then H has bounded factorizations
as well. So a useful way to establish that a noetherian prime ring R has bounded
factorizations is to find a length-preserving monoid homomorphism R* — D to
some monoid with bounded factorizations.

In the study of non-unique factorizations transfer homomorphisms to (commuta-
tive) Krull monoids play a major role; a monoid possessing such a homomorphism
is called a transfer Krull monoid (see [GZ19, Section 2.4] and [GZ20, Section 5]).
Large classes of rings, including noncommutative rings, whose underlying multi-
plicative monoid of cancellative elements are transfer Krull monoids are known
[GZ20, Example 5.4]. Every transfer homomorphism is fully length-preserving, so
for transfer Krull monoids the study of sets of lengths reduces to that of an associ-
ated Krull monoid, where a well-understood machinery is available. In particular,
transfer Krull monoids have bounded factorizations. So it may be interesting to
ask whether any of the classes of rings studied in this paper are in fact transfer
Krull. Tt turns out that this is not the case: the first Weyl algebras will provide
counterexamples in each class.

For Weyl algebras, we have the following very strong obstacle to studying their
arithmetic via any commutative cancellative monoid.

°In fact, the only factorizations of a? are those of the form a2 = b"a2b", so that even
L(a®) = {2+ 2n : n > 0} holds. To verify this, consider the normal forms of monomials
containing the element a exactly twice.
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Lemma 8.1. Let K be a field of characteristic not 2, and let A = A;(K) =
Klz][y; 6] with §(z) = 1 be the first Weyl algebra. Then there ezists no length-
preserving monoid homomorphism p: A* — D to any commutative cancellative
monoid D.

Proof. We have xy — yx = 1 and therefore
2y = (14 zy)z.

It is clear that z, y are atoms, and a direct computation shows that also 1+ xy is
an atom of A® (here we use char(K') # 2, otherwise 1 + zy = 2 4+ yz = yx factors).

Suppose there exists an length-preserving homomorphism ¢: A* — D to a
commutative cancellative monoid D. Then o(x)%p(y) = ¢(1 + zy)e(x), and hence
o(1+xy) = p(x)p(y). By assumption on ¢, the elements ¢(z) and ¢(y) are atoms,
so in particular non-units, contradicting that ¢(1 4 zy) is an atom. U

Ezample 8.2. Independent of the base field, the Weyl algebra A = A;(K) is a
noetherian domain of quadratic growth, Auslander-regular [Eks89], and a maximal
order in its simple Artinian ring of quotients [MRO1, Corollary 5.1.6]. By the
previous lemma, there exists no length-preserving monoid homomorphism to a
commutative cancellative monoid.

(1) Suppose char(K) = 0. Then A;(K) is a simple Dedekind domain [MRO1,
Corollary 7.11.3]. In particular, it has Krull and global dimension 1. Thus
A1(K) has bounded factorizations by any of Proposition 3.1, Proposition 3.2,
Corollary 3.7, Theorem 5.8, Corollary 6.4, Theorem 6.15.

(2) If K has characteristic p > 0, p # 2, then A;(K) has center K[z?, y?] and Krull
and global dimension 2. In this case A;(K) is module-finite over its center
and therefore a PI ring. Since it is a noetherian maximal order and PI, it is
also a bounded Krull order. Thus A;(K) has bounded factorizations by any of
Proposition 3.2, Proposition 3.8, Corollary 3.7, Corollary 4.11, Corollary 6.4,
Theorem 6.15.
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